基于改进动态时间规整的相似性度量及轨迹聚类
DOI:
CSTR:
作者:
作者单位:

南京理工大学 理学院 南京 210094

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


Improved dynamic time warping for similar metrics and trajectory clustering
Author:
Affiliation:

School of Science, Nanjing University of Science and Technology, Nanjing 210094, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统轨迹相似性计算方法度量效果不佳,且当时间序列数据过度扭曲时相似性度量难以取得好的效果。鉴此基于诸多实际应用之精度和实时性需求,文章基于动态时间规整算法,结合轨迹平移的思路及全局变量约束的思想,通过算法优化和参数分析给出了一种改进动态时间规整算法。数值实验结果表明改进算法在轨迹相似性度量上的识别率为90%,与经典算法相比提高了41.25%,度量精度明显提升。进而作为轨迹相似性度量函数结合谱聚类算法应用于轨迹数据聚类分析中,仿真轨迹数据实验结果表明基于改进算法的聚类分析能够清晰区分轨迹簇、聚类效果较为理想。

    Abstract:

    For the traditional trajectory similarity calculation method, the measurement effect is not good, and the similarity measurement is difficult to achieve good results when the time series data is excessively distorted . Based on the accuracy and real-time requirements of many practical applications, this article is based on the dynamic time warping , combined with the idea of trajectory translation and the idea of global variable constraints, and gives an improved dynamic time warping algorithm through algorithm optimization and parameter analysis. Numerical experiment results show that the improved algorithm has a recognition rate of 90% in the measurement of trajectory similarity, which is an increase of 41.25% compared with the classic algorithm, and the measurement accuracy is significantly improved. Furthermore, as a trajectory similarity measurement function combined with spectrum clustering algorithm, it is applied to trajectory data clustering analysis. Experimental results of simulated trajectory data shows that clustering analysis based on the improved algorithm can clearly distinguish trajectory clusters and the clustering effect is ideal.

    参考文献
    相似文献
    引证文献
引用本文

程 前,李建良.基于改进动态时间规整的相似性度量及轨迹聚类[J].电子测量技术,2021,44(23):1-5

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-02
  • 出版日期:
文章二维码