基于GWO-TCN网络的HVDC输电线路故障诊断
DOI:
CSTR:
作者:
作者单位:

湖北工业大学 湖北省电网智能控制与装备工程技术研究中心 武汉 430068

作者简介:

通讯作者:

中图分类号:

TM712

基金项目:

国家自然科学基金(61903129)资助项目


Fault diagnosis of HVDC transmission lines based on GWO-TCN Networks
Author:
Affiliation:

Hubei Power Grid Intelligent Control and Equipment Engineering Technology Research Center, Hubei University of Technology,wuhan 430068,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现有高压直流(HVDC)故障检测方法灵敏度低,难以识别高阻接地故障,文章提出了一种基于改进灰狼算法(GWO)优化时间卷积神经网络(TCN)的HVDC传输系统故障检测方法,整流侧检测装置采集的故障电流信号直接用作TCN的输入数据,克服了故障信号处理的繁琐过程。利用Simulink仿真软件建立±500 kV高压直流输电线路模型,对不同故障区域和故障类型进行仿真实验,使用基于LSTM模型,BiLSTM模型和CNN模型三种模型的故障检测方法进行比较。测试结果表明,GWO-TCN网络能够可靠、准确地在过渡电阻高达800Ω时进行HVDC输电线路故障选极和选区。

    Abstract:

    The existing high voltage direct current (HVDC) fault detection methods have low sensitivity and are difficult to identify high resistance grounding faults. This paper proposes a HVDC transmission system fault detection method based on Improved Grey Wolf optimizer (GWO) optimized time convolutional network (TCN), The fault current signal collected by the rectifier side detection device is directly used as the input data of TCN, which overcomes the cumbersome process of fault signal processing. The ± 500 kV HVDC transmission line model is established by using Simulink simulation software, and the simulation experiments are carried out for different fault areas and fault types. The fault detection methods based on LSTM model, bilstm model and CNN model are compared. The test results show that gwo-tcn network can reliably and accurately select the fault pole and selection of HVDC transmission line when the transition resistance is up to 800 Ω.

    参考文献
    相似文献
    引证文献
引用本文

刘辉,李永康,张淼,刘维.基于GWO-TCN网络的HVDC输电线路故障诊断[J].电子测量技术,2021,44(22):168-174

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-04
  • 出版日期:
文章二维码