基于YOLOv3的轻量化口罩佩戴检测算法
DOI:
CSTR:
作者:
作者单位:

青岛科技大学 自动化与电子工程学院 青岛 266061

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:


Lightweight mask wearing detection algorithm based on YOLOv3
Author:
Affiliation:

College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266061, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当前疫情防控形势严峻,在人群密集场所进行实时快速的口罩佩戴检测可以有效降低病毒传播的风险。针对目前人工检测效率低的问题,提出一种基于YOLOv3的轻量化口罩佩戴检测算法。使用ShuffleNetv2替换原来的主干特征提取网络,降低网络参数量,减少计算功耗。提出将SKNet注意力机制引入到特征融合网络部分,增强不同尺度的特征提取能力;使用CIoU作为边界框回归损失函数,进一步提高检测精度。在构建的人脸口罩检测数据集上实验表明,与原YOLOv3相比,本文所提算法在保持较高检测精度的情况下,检测速度提高了34FPS,有效地实现了准确快速的口罩佩戴检测,与其他主流目标检测算法相比,该算法也具有更好的检测效果。

    Abstract:

    At present, the situation of epidemic prevention and control is grim. Real time and rapid mask wearing detection in crowded places can effectively reduce the risk of virus transmission. Aiming at the low efficiency of manual detection, a lightweight mask wearing detection algorithm based on YOLOv3 is proposed. ShuffleNetv2 is used to replace the original backbone feature extraction network to reduce the amount of network parameters and computing power consumption. SKNet attention mechanism is introduced into the feature fusion network to enhance the ability of feature extraction at different scales; CIoU is used as the boundary box regression loss function to further improve the detection accuracy. Experiments on the constructed face mask detection data set show that, compared with the original YOLOv3, the proposed algorithm improves the detection speed by 34FPS while maintaining high detection accuracy, and effectively realizes accurate and fast mask wearing detection. Compared with other mainstream target detection algorithms, the algorithm also has better detection effect.

    参考文献
    相似文献
    引证文献
引用本文

薄景文,张春堂.基于YOLOv3的轻量化口罩佩戴检测算法[J].电子测量技术,2021,44(23):105-110

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-02
  • 出版日期:
文章二维码