离散姿态感知量结构化矿工异常行为识别方法
DOI:
CSTR:
作者:
作者单位:

太原理工大学 新型传感器与智能控制教育部重点实验室 太原 030024

作者简介:

通讯作者:

中图分类号:

TN911.7

基金项目:

NSFC-山西煤基低碳联合基金项目(U1810121)、2020年中央引导地方科技发展资金项目(YDZX20201400001796)、山西省应用基础研究计划(批准号201901D211077 )资助


Structural miners' abnormal behavior recognition method based on discrete attitude perception
Author:
Affiliation:

Key Laboratory of Advanced Transducers and Intelligent Control System Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    煤矿生产“减人提效”的发展趋势使保障工人安全愈发重要,针对当前矿工异常行为检测方法数据量大、鲁棒性不强的问题,提出了一种离散姿态感知量结构化的矿工异常行为识别方法。采用卡尔曼滤波技术优化基于九轴姿态传感器获得的行为感知信息,利用采样窗口截取行为信息后,依姿态感知量轴向结构化为三通道RGB行为图像,结合所设计用于提取时空特征的CTFRN模型,精确提取拟识别5种矿工行为的时空特征,以低运算量、高鲁棒性特点监测矿工异常行为。与其他模型对比结果表明:所提方法较准确率更高,可达99.3%。所设计系统及识别方法可用于实际环境中矿工异常行为实时监测,保障矿工生命安全。

    Abstract:

    The development trend of ' reducing people and improving efficiency ' in coal mine production makes it more and more important to ensure the safety of workers. Aiming at the problems of large amount of data and weak robustness of current miner abnormal behavior detection methods, a miner abnormal behavior recognition method with structured discrete attitude perception is proposed. The Kalman filter technology is used to optimize the behavior perception information obtained based on the nine-axis attitude sensor. After the behavior information is intercepted by the sampling window, the three-channel RGB behavior image is structured according to the axial direction of the attitude perception. Combined with the CTFRN model designed to extract the temporal and spatial characteristics, the temporal and spatial characteristics of the five kinds of miners’ behaviors are accurately extracted, and the miners’ abnormal behaviors are monitored with low computational complexity and high robustness. Compared with other models, the results show that the proposed method has higher accuracy, up to 99.3%. The designed system and recognition method can be used for real-time monitoring of abnormal behavior of miners in actual environment to ensure the safety of miners.

    参考文献
    相似文献
    引证文献
引用本文

陈宝全,乔铁柱,卞 凯,杨 毅,张海涛.离散姿态感知量结构化矿工异常行为识别方法[J].电子测量技术,2021,44(20):65-70

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-25
  • 出版日期:
文章二维码