基于多模型软测量技术的扭矩在线测量方法
DOI:
CSTR:
作者:
作者单位:

中北大学 仪器科学与动态测试教育部重点实验室 太原 030051

作者简介:

通讯作者:

中图分类号:

TP274

基金项目:

国家自然科学基金(61471325)、国家自然科学基金青年科学基金(52006114)项目资助


Research on on-line torque measurement method based on multi-model soft-sensing technology
Author:
Affiliation:

Key laboratory of instrumental science and dynamic testing, Ministry of Education,North University of China,Taiyuan 030051,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为改善扭矩间接测量过程中因物理量间的线性关系导致单个物理量变化对最终结果影响过大的问题,本文提出了一种基于加权K-means聚类与LSSVM融合的非线性多模型软测量方法。该方法首先选择多个易测变量作为辅助参数,利用主客观综合加权理论对数据预处理。其次利用K-means聚类算法将物理特性相似的数据构成集群,最后基于最小二乘支持向量机算法对数据集群建立多模型并进行测量。基于实际采集数据对所提出方法进行了验证,结果表明,相同实验条件下本文所提出的模型较传统LSSVM软测量模型和K-means-LSSVM模型的测量均方根误差分别降低了0.484和0.263,平均绝对百分误差分别下降了1.003和0.292,有效提升了测量的精度与稳定性。

    Abstract:

    In order to improve the problem that the change of a single physical quantity has too much impact on the final result due to the linear relationship between physical quantities in the process of indirect torque measurement, a nonlinear multi model soft sensing method based on weighted K-means clustering and LSSVM is proposed in this paper. Firstly, multiple easily measured variables are selected as auxiliary parameters, and the data are preprocessed by using subjective and objective comprehensive weighting theory. Secondly, K-means clustering algorithm is used to form clusters of data with similar physical characteristics. Finally, multi model of data cluster is established and measured based on least squares support vector machine algorithm. The results show that under the same experimental conditions, the root mean square error of the proposed model is reduced by 0.484 and 0.263 respectively, and the average absolute percentage error is reduced by 1.003 and 0.292 respectively, which effectively improves the accuracy and stability of the measurement.

    参考文献
    相似文献
    引证文献
引用本文

陈泽慧,李博,李博.基于多模型软测量技术的扭矩在线测量方法[J].电子测量技术,2021,44(23):146-150

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-02
  • 出版日期:
文章二维码