基于改进特征金字塔的目标检测
DOI:
CSTR:
作者:
作者单位:

1.北京建筑大学 理学院,北京市 100044; 2.北京建筑大学 北京未来城市设计高精尖创新中心,北京市 100044

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金(No. 62072024)、北京建筑大学北京未来城市设计高精尖创新中心资助项目(UDC2017033322,UDC2019033324)、北京建筑大学市属高校基本科研业务费专项资金(NO.?X20084,ZF17061)资助


Object detection based on improved feature pyramid
Author:
Affiliation:

1.Science School,Beijing University of Civil Engineering and Architecture Beijing 100044; 2.Beijing Advanced Innovation Center for Future Urban Design,Beijing University of Civil Engineering and Architecture,Beijing 100044

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    特征金字塔网络(feature pyramid network,FPN)已经成为目标检测中提取多尺度特征的有效框架。然而,FPN存在着由于通道减少导致语义信息丢失、高层特征只包含单尺度的上下文信息和具有语义差别的不同层特征直接融合造成混叠效应等问题。针对上述问题,本文提出了基于注意力增强指导的特征金字塔网络。该模型由通道特征增强模块、上下文增强模块和注意力指导特征融合模块三个部分组成。具体来说,通道特征增强模块通过建模特征之间的依赖关系减轻由于通道减少造成的信息损失,上下文增强模块利用不同级别特征进行上下文信息提取以增强高层特征,注意力指导特征融合模块利用注意力机制指导相邻层特征学习来增进彼此语义信息的一致性。将Faster R-CNN和Mask R-CNN目标检测器中的FPN替换为本文模型并在不同的数据集上进行实验,实验结果表明,改进后的Faster R-CNN检测器在PASCAL VOC和MS COCO数据集上的平均精度分别提高1.5%和1%,改进后的Mask R-CNN检测器在MS COCO数据集上也分别将Mask AP和Box AP的性能提升了0.8%和1.1%。

    Abstract:

    Feature pyramid network (FPN) has become an effective framework for extracting multi-scale features in object detection. However, FPN has problems such as loss of semantic information due to channel reduction, high-level features only contain single-scale context information, and the direct fusion of different layer features with semantic differences resulting in aliasing effects. In response to the above problems, this paper proposes a feature pyramid network based on attention enhancement guidance, which is composed of channel feature enhancement module, context enhancement module and attention guidance fusion module. Specifically, the channel feature enhancement module reduces the information loss caused by channel reduction by modeling the dependency between the features, the context enhancement module uses different levels of features to extract context information to enhance high-level features,and the attention guidance feature fusion module uses the attention mechanism to guide the feature learning of adjacent layers to enhance the consistency of semantic information with each other. This paper replaces the FPN in the Faster R-CNN and Mask R-CNN object detectors with AEGFPN and performs experiments on different data sets, which experimental results show that the average accuracy of the improved Faster R-CNN detector on the PASCAL VOC and MS COCO datasets is increased by 1.5% and 1%, respectively, and the improved Mask R-CNN detector also improves the performance of Mask AP and Box AP by 0.8% and 1.1% on the MS COCO data set.

    参考文献
    相似文献
    引证文献
引用本文

史晨晨,张长伦,何强,王恒友.基于改进特征金字塔的目标检测[J].电子测量技术,2021,44(20):150-156

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-25
  • 出版日期:
文章二维码