改进卷积空间传播网络的单目图像深度估计
DOI:
CSTR:
作者:
作者单位:

南京航空航天大学 机电学院 南京 210016

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金联合基金项目(U20A20293)资助


Monocular image depth estimation of Improved Convolutional Spatial Propagation Network
Author:
Affiliation:

College of Mechanical and Electrical Engineering, Nanjing University of Aeronautic and Astronautics, Nanjing , 210016, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    单目图像深度估计是计算机视觉领域中的一个基本问题,卷积空间传播网络(CSPN)是现阶段最先进的单目图像深度估计方法之一。针对CSPN在预测密集深度图时存在部分物体结构变形和物体间边缘模糊不清的边界混合问题,分别从网络结构与损失函数两部分进行了改进。对输入稀疏深度图进行了三次不同尺寸下采样,并将其加入到U-Net模块相应的编码过程和跳跃连接部分,以使其能够更精确地捕捉不同尺度的物体结构。并使用深度误差对数、深度信息梯度及表面法线这三种损失函数加权组合形成的改进损失函数来替换原始损失函数。在NYU-Depth-v2数据集上的实验结果表明,本文的改进卷积空间传播网络(ICSPN)与CSPN相比,其均方根误差RMSE降低了17.23%,平均相对误差REL降低了28.07%。本文的ICSPN充分利用了输入稀疏深度图,减小了预测密集深度图中物体结构的变形,同时采用带有梯度损失的损失函数对训练过程进行监督,降低了物体边缘位置误差,减少了边界混合问题的产生。

    Abstract:

    Monocular image depth estimation is a basic problem in the field of computer vision, Convolutional Spatial Propagation Network (CSPN) is one of the most advanced monocular image depth estimation methods. Aiming at the deformation problem of some objects and the boundary mixing problem caused by the blurring of the edges between objects in the dense depth map predicted by the network, we have improved CSPN from the network structure and loss function respectively. The input sparse depth map is downsampled three times with different sizes and added to the corresponding coding process and skip connection part of the U-Net module, so that it can more accurately capture the structure of objects with different scales. The original loss function is replaced by the improved loss function formed by the weighted combination of depth error logarithm, depth information gradient and surface normal. The experimental results on nyu-depth-v2 data set show that compared with CSPN, the root mean square error RMSE and average relative error REL of ICSPN are reduced by 17.23% and 28.07% respectively. The ICSPN in this paper makes full use of the input sparse depth map to reduce the deformation of the object structure in the predicted dense depth map. At the same time, the loss function with gradient loss is used to monitor the training process, which reduces the edge position error of the object and the problem of boundary mixing.

    参考文献
    相似文献
    引证文献
引用本文

刘安旭,黎向锋,刘晋川,王建明,赵康,左敦稳.改进卷积空间传播网络的单目图像深度估计[J].电子测量技术,2021,44(23):78-85

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-02
  • 出版日期:
文章二维码