基于BiLSTM神经网络的锂电池SOH估计与RUL预测
DOI:
CSTR:
作者:
作者单位:

青岛科技大学自动化与电子工程学院 青岛 266061

作者简介:

通讯作者:

中图分类号:

TM911

基金项目:

国家自然科学基金(61673357)、山东省重点研发计划项目(公益类)(2019GGX101012)、山东省高等学校科学技术计划项目(J18KA323)、山东省研究生导师指导能力提升项目(SDYY18092)资助


The SOH estimation and RUL prediction of lithium battery based on BiLSTM
Author:
Affiliation:

School of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266061, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对锂电池健康状态(state of health,SOH)估计与剩余寿命(remaining useful life,RUL)预测问题,设计一种基于双向长短期记忆(bi-directional long short-Term memory,BiLSTM)神经网络模型的预测方法。首先,提取美国国家航空航天局(national aeronautics space and administration,NASA)锂电池的容量数据,将容量数据转为SOH数据并作为模型输入数据;其次,建立双层BiLSTM神经网络,使用加速自适应矩估计算法(nesterov-accelerated adaptive moment estimation,Nadam)优化函数动态调整学习率;然后,通过双向长短期记忆神经网络模型分析锂电池数据,建立电池容量、SOH和RUL之间的联系;最后,全连接层输出电池SOH的估计曲线,从而预测其剩余寿命。通过NASA数据进行预测实验,BiLSTM神经网络的RUL预测误差稳定在3以内,SOH预测曲线的拟合度稳定在94.211%-95.839%,BiLSTM神经网络具有更高的鲁棒性和准确性。

    Abstract:

    This paper uses a bi-directional long short-term memory (BiLSTM) neural network model to solve the state of health (SOH) and remaining useful life (RUL) traditional prediction methods of lithium batteries. The accuracy of traditional prediction methods is low. The problem. Firstly, extract the capacity data of the national aeronautics and space administration (NASA) lithium battery, convert the capacity data into SOH data and use it as input data; secondly, establish a two-layer BiLSTM neural network and use the Nadam optimization function to dynamically adjust learning rate; Then, the lithium battery data is analyzed through the two-way long and short-term memory neural network model to establish the connection between battery capacity, SOH and RUL; finally, the fully connected layer outputs the estimated curve of the battery SOH to predict its remaining life. Prediction experiments with NASA data show that the RUL prediction error of the BiLSTM neural network is stable within 3, and the fit of the SOH prediction curve is stable at 94.211%-95.839%. The BiLSTM neural network has higher robustness and accuracy.

    参考文献
    相似文献
    引证文献
引用本文

王 义,刘 欣,高德欣.基于BiLSTM神经网络的锂电池SOH估计与RUL预测[J].电子测量技术,2021,44(20):1-5

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-25
  • 出版日期:
文章二维码