一种面向类不平衡加密流量的端到端分类模型
DOI:
CSTR:
作者:
作者单位:

南京信息工程大学 电子信息工程学院 江苏省南京市 210044

作者简介:

通讯作者:

中图分类号:

TP393.0

基金项目:

国家自然科学基金项目(U1836104, 61772281, 61801073, 61931004, 62072250)、南京信息工程大学人才启动基金项目(2020r061)资助


An end-to-end classification model for class-unbalanced encrypted traffic
Author:
Affiliation:

College of Electronical and Information Engineering,Nanjing University of Information Science and Technology, Nanjing Jiangsu 210044,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当前流量分类方法在面对类不平衡流量时,往往存在着在少数类上的分类效果不佳的问题。针对该问题,提出了一种面向类不平衡加密流量的端到端分类模型。所提模型在传统卷积神经网络模型的基础上添加了一个Inception模块进行特征融合,让模型能提取到更丰富的特征,弥补了少数类因样本数量少所带来的特征学习上的不足;同时引入一个通道-空间域注意力模块,对Inception模块所融合的特征根据重要程度赋予相应的权值,使模型更多地关注到更重要的特征,增强流量特征的表征能力。与此同时,为减少网络参数,采用卷积层加全局平均池化层的组合代替模型中的全连接层。实验结果表明,相较于当前典型流量分类模型,所提模型在数据集少数类上具有更优的分类性能,精确率、召回率和F1-Score均有显著提高,其中综合性能指标F1-Score在某些少数类上的提升达到了15%~18%。

    Abstract:

    Current traffic classification methods often suffer from poor classification effects on minority classes when facing class imbalanced flows. To solve this problem, an end-to-end classification model for class-unbalanced encrypted traffic is proposed. The proposed model adds an Inception module to the traditional CNN model for feature fusion, so that the model can extract richer features, which makes up for the lack of feature learning caused by the small number of samples in a minority of categories; at the same time introduces a The channel-spatial domain attention module assigns corresponding weights to the features fused by the Inception module according to their importance, so that the model pays more attention to more important features and enhances the characterization ability of traffic features. At the same time, in order to reduce network parameters, a combination of convolutional layer and global average pooling layer is used to replace the fully connected layer in the model. The experimental results show that compared with the current typical traffic classification model, the proposed model has better classification performance on the minority classes of the data set, and the accuracy rate, recall rate and F1-Score have been significantly improved. And the comprehensive performance index F1-Score is on some minority classes. The improvement reached 15%~18%.

    参考文献
    相似文献
    引证文献
引用本文

林鹏,翟江涛,许历隆,崔永富.一种面向类不平衡加密流量的端到端分类模型[J].电子测量技术,2021,44(20):142-149

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-25
  • 出版日期:
文章二维码