基于表面粗糙度聚类的机载雷达点云数据地物分类方法研究
DOI:
CSTR:
作者:
作者单位:

中北大学 信息与通信工程学院,山西 太原 030051

作者简介:

通讯作者:

中图分类号:

TP79

基金项目:

国家自然科学基金(61972363)、山西省重点研发计划(国际科技合作)项目(201903D421043)、中北大学研究生科技基金项目(20201728)资助


Research on terrain classification method of airborne radar point cloud data based on surface roughness clustering
Author:
Affiliation:

School of Information and Communication Engineering, North University of China,Taiyuan 030051, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在机载激光雷达的发展与应用下,获取地物的空间分布情况变得更加快速便捷。为了实现面向机载激光雷达点云数据的地物分类,本文首先利用高程直方图去除原始点云的离群点;其次利用VoxelGrid滤波器采样,在确保形状的前提下,大量降低点云数量;然后改进K-Means聚类方法,结合三维点云数据携带的高程信息对原始聚类中心和K值进行确定,并采用点云表面粗糙度做聚类分析,从而得到对地物的精确分类。通过对实验采集数据和公开数据上的结果对比可知,本文所提方法对点云数据分类的准确性高,总体分类精度分别为88.17%和90.47%,Kappa系数分别为0.81和0.85。

    Abstract:

    With the development and application of airborne radar technology, it is faster and more convenient to obtain the spatial distribution of ground objects. To realize the terrain classification for airborne radar point cloud data, we first adopt the elevation histogram to remove the outliers of the original point cloud. Then, the voxelgrid filter is used to sample the point cloud, which can greatly reduce the number of points while maintaining the shape characteristics of the point cloud. Next, the K-means clustering method is improved. The K value and initial clustering center are determined through the height information of three-dimensional point cloud data, and the point cloud surface roughness is used for cluster analysis to realize the classification of different ground objects. The experimental results on the collected data and the open data show that the proposed method has high accuracy for point cloud data classification, with the overall classification accuracy reaching 88.17% and 90.47%, respectively, and the Kappa coefficient being 0.81 and 0.85, respectively.

    参考文献
    相似文献
    引证文献
引用本文

王 瑞,杨风暴.基于表面粗糙度聚类的机载雷达点云数据地物分类方法研究[J].电子测量技术,2021,44(20):137-141

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-25
  • 出版日期:
文章二维码