基于三分法EMD和Autogram的滚动轴承故障诊断
DOI:
CSTR:
作者:
作者单位:

中北大学深孔加工工程技术研究中心 太原 030051

作者简介:

通讯作者:

中图分类号:

TH137;TP277

基金项目:


Rolling bearing fault diagnosis based on trisection EMD and Autogram
Author:
Affiliation:

Deep Hole Processing Engineer and Technology Research Center of Shanxi Province, North University of China , Taiyuan 030051,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对强噪声下滚动轴承故障微弱,特征频率难以提取致使无法精准诊断故障的问题,提出了基于三分法经验模态分解融合Autogram阈值算法的故障诊断方法,在采用EMD对信号初步降噪时,提出一种基于M指标的三分法EMD将所有固有模态函数重构成三个分量(记M1,M2,M3),M2即为所需的故障分量;选用Autogram算法处理M2分量确定共振频带,对共振信号做阈值包络谱处理,得到3种阈值频谱,根据阈值谱中故障特征频率诊断滚动轴承故障类型。本文采用了仿真信号结合滚动轴承的内、外圈实测数据试验方法证明了该方法的有效性,实验结果证明该方法故障诊断率可达95%以上。

    Abstract:

    Aiming at the problem that the rolling bearing fault under strong noise is weak and the characteristic frequency is difficult to extract, which makes it impossible to diagnose the fault accurately, a fault diagnosis method based on trisection EMD fusion Autogram threshold algorithm is proposed. EMD is used to reduce the noise of the signal, and a trisection method based on M index is proposed. EMD reconstructs all IMF into three components (Write M1, M2, M3), and M2 is the required fault component; The Autogram algorithm is used to process the M2 component to determine the resonance frequency band, and the resonance signal is processed by the threshold envelope spectrum to obtain three threshold spectra. The fault type of rolling bearing is diagnosed according to the fault characteristic frequency in the threshold spectrum. In this paper, the simulation signals and the measured data of the inner and outer rings of rolling bearings are used to prove the effectiveness of this method. Experimental results show that the fault diagnosis rate of this method is over 95%

    参考文献
    相似文献
    引证文献
引用本文

杨雨竹,李耀明,周进杰.基于三分法EMD和Autogram的滚动轴承故障诊断[J].电子测量技术,2021,44(23):151-157

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-02
  • 出版日期:
文章二维码