基于CNN的水表指针读数识别及STM32实现方案设计
DOI:
CSTR:
作者:
作者单位:

昆明理工大学 信息工程与自动化学院 昆明 650500

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:


Recognition of water meter pointer reading based on CNN and design of STM32 implementation scheme
Author:
Affiliation:

Department of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高卷积神经网络对于水表指针读数识别的准确率,同时实现将卷积神经网络移植到STM32单片机中运行,使用了包含2913张水表指针图片的数据集对GoogLeNet和ResNet-18进行迁移学习和测试,其中GoogLeNet的测试集准确率为89.37%,ResNet-18的测试集准确率为93.24%。借鉴于ResNet-18模型的跳跃连接思想,使用了高低层特征融合的方法,在保证感受野大小不变的前提下将7×7大卷积核替换为3个3×3小卷积核的串接以减少网络的参数量,同时减低网络的深度,加快了训练时网络的收敛,之后设计了一个对于水表指针读数识别准确率更高和收敛更快的卷积神经网络模型,此模型的测试集准确率为95.11%。为克服STM32单片机存储资源极其有限的困难,在保证较高准确率的前提下进一步减小网络规模从而降低网络参数量,设计出模型的测试集准确率为91.51%,训练过程在PC端使用MATLAB深度学习工具箱完成,生成的onnx模型仅有948KB大小,运行占用RAM大小为437.14KB。

    Abstract:

    In order to improve the accuracy of convolutional neural network for water meter pointer reading recognition and realize the operation of convolutional neural network transplanted into STM32 microcontroller, A data set containing 2913 water meter pointer pictures was used for transfer learning and testing of GoogLeNet and ResNet-18. The accuracy of GoogLeNet test set was 89.37%, and that of ResNet-18 test set was 93.24%. Based on the jumping connection idea of Resnet-18 model, the method of feature fusion of high and low levels is used. On the premise that the size of receptive field remains unchanged, the 7×7 large convolution kernel is replaced by 3 3×3 small convolution kernels in series to reduce the number of network parameters, reduce the depth of the network, and speed up the convergence of the network during training. Then, a convolutional neural network model with higher accuracy and faster convergence for water meter pointer reading is proposed. The test set accuracy of this model is 95.11%. In order to overcome the difficulty of extremely limited storage resources of STM32 microcontroller and further reduce the network size and the number of network parameters on the condition of ensuring high accuracy, the test set accuracy of the designed model is 91.51%. The training process is completed using MATLAB deep learning toolbox on PC, and the generated onnx model is only 948KB in size. The running footprint of RAM is 437.14KB.

    参考文献
    相似文献
    引证文献
引用本文

张鹏飞,叶哲江,杨嘉林,李家成.基于CNN的水表指针读数识别及STM32实现方案设计[J].电子测量技术,2021,44(23):61-67

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-02
  • 出版日期:
文章二维码