基于树莓派嵌入式平台的车道线检测算法
DOI:
CSTR:
作者:
作者单位:

北京工业大学 信息学部 北京100124

作者简介:

通讯作者:

中图分类号:

TP368.2: TP391.41

基金项目:

国家自然科学基金项目(1L001790201501)资助


Lane line detection algorithm based on Raspberry pi embedded platform
Author:
Affiliation:

Faculty of Information Technology, BeiJing University of Technology, Beijing ,100124,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文设计了一种基于树莓派嵌入式平台的多道路场景车道线检测算法。在图像预处理阶段,设计了一种车道线的自适应二值化提取算法,通过将待测像素点与其所在菱形空间的顶点进行比较,完整地提取了二值化后的车道线信息;同时与最大类间方差法(OTSU)结合,以图像融合的方式有效滤除了干扰信息。在车道线拟合阶段,对概率霍夫变换进行了斜率约束与限定距离的改进,进行二次滤除干扰信息后准确计算出车道线边缘点。最后使用最小二乘法拟合出车道线。测试结果表明,算法抗干扰能力较强,对多种道路场景的检测准确率可达90.24%,并且在树莓派平台上运行速度为25fps,满足实时的要求。

    Abstract:

    This paper designs a lane line detection algorithm for multi-road scenes based on Raspberry Pi embedded platform in the image preprocessing stage. In the image preprocessing stage, an adaptive binarization extraction algorithm for lane lines is designed. By comparing the pixels to be measured with the vertices of the diamond space where they are located, the binarized lane line information is completely extracted. at the same time, combined with the method of maximum classes error (OTSU), the interference information is effectively filtered out by means of image fusion. In the lane line fitting stage, the slope constraint and distance limitation of the Progressive Probabilistic Hough Transform are improved, and the edge points of the lane line are accurately calculated after further filtering out interference information. Finally, the least squares method is used to fit the lane line. The test results show that the algorithm has a stronger anti-interference ability, and the detection accuracy of multiple road scenes can reach 90.24%. And the running speed on the Raspberry Pi platform is 25fps, which meets the real-time requirements.

    参考文献
    相似文献
    引证文献
引用本文

宋宝玉,王波涛.基于树莓派嵌入式平台的车道线检测算法[J].电子测量技术,2021,44(23):93-98

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-07-02
  • 出版日期:
文章二维码