基于OpenPose改进的轻量化人体动作识别模型
DOI:
CSTR:
作者:
作者单位:

上海大学 通信与信息工程学院 上海 200444

作者简介:

通讯作者:

中图分类号:

TN911.73

基金项目:

中国国家自然科学基金(61771299)资助


Improved lightweight human action recognition model based on OpenPose
Author:
Affiliation:

College of Communication and Information Engineering, Shanghai University, Shanghai 200444, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文聚焦于自下而上的人体姿态估计网络OpenPose模型参数量大的缺点,对OpenPose模型的特征提取网络和预测网络分别进行改进,实现轻量化模型的目标。本文使用参数量更少、准确度更高的ResNet18网络替代了原模型中的VGG19网络,并且在不损失过多识别精度的前提下,以深度可分离卷积替代了预测网络中的部分卷积核,以此来降低网络结构的参数量。接着通过人工神经网络对人体动作进行分类,在传统的非线性网络中加入了线性模块提高了网络的记忆能力和泛化能力。结果表明,轻量化OpenPose模型的运行帧数比原先提高了9%至16%,动作识别网络经过3000次迭代训练后,站立、坐着、走、坐下和起立的识别精度达到了0.877、0.835、0.793、0.815和0.808。最后,将整体识别网络应用于真实场景下,根据结果表明,本文的方法可以在嵌入式设备中正常运行,且识别效果较好。

    Abstract:

    This article focuses on the shortcomings of the bottom-up human pose estimation network OpenPose model with large parameters, and improves the feature extraction network and prediction network of the OpenPose model to achieve the goal of lightweight model.This article uses the ResNet18 network which has fewer parameters and higher accuracy to replace the VGG19 network in the original model.In order to reduce the amount of parameters of the network structure, we replace part of the convolution kernel in the prediction network with the deep separable convolution without losing too much recognition accuracy. Then, the human body actions are classified through the artificial neural network, and the linear module is added to the traditional nonlinear network to improve the memory and generalization ability of the network. The results show that the FPS of the lightweight OpenPose model has increased by 9% to 16% compared to the original. After 3000 iterations of the network training, the recognition accuracy of standing, sitting, walking, sitting and standing up reach 0.877, 0.835, 0.793, 0.815 and 0.808, respectively. Finally, the recognition network is applied to a real scene. According to the results, it is shown that the method in this paper runs normally in embedded devices and performs well.

    参考文献
    相似文献
    引证文献
引用本文

李一凡,袁龙健,王 瑞.基于OpenPose改进的轻量化人体动作识别模型[J].电子测量技术,2022,45(1):89-95

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-19
  • 出版日期:
文章二维码