基于Lyapunov控制的多约束模型预测控制方法
DOI:
CSTR:
作者:
作者单位:

河北工业大学省部共建电工装备可靠性与智能化国家重点实验室 天津 300130

作者简介:

通讯作者:

中图分类号:

TM464

基金项目:

河北省自然科学基金(E2019202481)资助


Multi-constraint model predictive control method based on Lyapunov control
Author:
Affiliation:

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    有限集模型预测控制最大优势在于目标函数增加约束灵活,但加权系数难以确定及多约束间的耦合效应导致的不稳定现象大大限制了其应用。针对这个问题,提出了基于Lyaponov控制的多约束模型预测控制方法,该方法首先通过Lyapunov控制实现对主约束输出电流的控制,再根据开关转换次数约束项的轻重自由设置加权系数,然后通过目标函数最小化实现多约束协同控制。仿真结果表明所提出方法实现了输出电流、开关转换次数的多约束模型预测协同控制,并对加权系数有良好的鲁棒性,在加权系数偏差高达10倍时输出电流THD仅为5.63%。

    Abstract:

    The biggest advantage of finite set model predictive control is that the objective function increases the flexibility of constraints, but the weighting coefficient is difficult to determine and the instability caused by the coupling effect between multiple constraints greatly limits its application. To solve this problem, a multi-constraint model predictive control method based on Lyaponov control is proposed. This method first realizes the control of the output current of the main constraint through Lyapunov control, and then sets the weighting coefficient freely according to the weight of the constraint term of the switching times, and then realizes the multi-constraint cooperative control by minimizing the objective function. The simulation results show that the proposed method realizes the multi-constraint model predictive cooperative control of output current and switching times, and has good robustness to the weighting coefficient. When the deviation of the weighting coefficient is as high as 10 times, the output current THD is only 5.63%.

    参考文献
    相似文献
    引证文献
引用本文

唐圣学,孙志国,宋晓.基于Lyapunov控制的多约束模型预测控制方法[J].电子测量技术,2022,45(1):172-176

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-19
  • 出版日期:
文章二维码