基于FCN的轮对踏面检测技术
DOI:
CSTR:
作者:
作者单位:

1.青岛大学 自动化学院 青岛 266071;2. 山东省工业控制技术重点实验室 青岛 266071

作者简介:

通讯作者:

中图分类号:

TP29

基金项目:

山东省自然科学基金资助项目(ZR2019MF063);山东省重点研发计划(2017GGX10115)资助


FCN-based wheelset tread detection technology
Author:
Affiliation:

1. School of automation,Qingdao University, Qingdao 266071, China; 2. The shandong province key laboratory of industrial control technology, Qingdao 266071, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统的图像处理方法在检测轮对踏面上的磨损区域时,由于轮对表面存在的阴影以及污渍的影响,易产生误识别问题,为此提出一种基于全卷积神经网络检测踏面轮廓图以识别磨损区域的方法。首先使用CCD相机对低速运行的轮对踏面轮廓图进行采集,然后将轮廓图中存在磨损的区域进行标定制作成标签,使用FCN-32S、FCN-16S、FCN-8S模型进行训练。实验结果表明FCN-32S、FCN-16S、FCN-8S模型均能有效检测出存在较大磨损的区域,而FCN-8S模型对于点状磨损区域的检测效果明显优于FCN-32S及FCN-16S,且对于实验中设置的存在污渍干扰的区域三种模型均不存在误识别现象。最后通过MIoU值对FCN-32S、FCN-16S、FCN-8S检测效果进行评价,改变模型训练次数,MIoU值最终会停留在0.7附近,检测效果良好。

    Abstract:

    When the traditional image processing method detects the wear area on the tread of the wheel, due to the influence of the shadow and stains on the surface of the wheel, it is easy to cause misidentification. Ways to identify areas of wear. First, use a CCD camera to collect the low-speed wheel tread profile map, and then calibrate the worn area in the profile map to make labels, and use FCN-32S, FCN-16S, FCN-8S models for training. The experimental results show that the FCN-32S, FCN-16S, and FCN-8S models can effectively detect areas with large wear, and the FCN-8S model is significantly better than FCN-32S and FCN-16S for detecting point wear areas. , And there is no misrecognition phenomenon for the three models of the area with stain interference set in the experiment. Finally, the detection effect of FCN-32S, FCN-16S, and FCN-8S is evaluated by the MIoU value, and the number of model training is changed, the MIoU value will eventually stay near 0.7, and the detection effect is good.

    参考文献
    相似文献
    引证文献
引用本文

杨玲,高军伟.基于FCN的轮对踏面检测技术[J].电子测量技术,2022,45(1):117-121

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-19
  • 出版日期:
文章二维码