自适应VMD联合MOMEDA的滚动轴承故障提取
DOI:
CSTR:
作者:
作者单位:

1.昆明理工大学机电工程学院 昆明 650500;2.云南省先进装备智能维护工程研究中心 昆明 650500

作者简介:

通讯作者:

中图分类号:

TH133.3; TH165. 3

基金项目:

国家自然科学基金(No.52065030;No.51875272)项目资助 云南省重大科技专项计划(No.202002AC080001)项目资助


Rolling bearing fault extraction based on adaptive VMD and MOMEDA
Author:
Affiliation:

1. Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China; 2. Engineering Research Center for Intelligent Maintenance of Advanced Equipment of Yunnan Province, Kunming 650500, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对强背景噪声下滚动轴承微弱故障特征提取问题,提出了一种基于参数自适应优化变分模态分解(VMD)与多点最优最小熵解卷积(MOMEDA)相结合的轴承故障特征提取方法。首先对滚动轴承时域振动信号进行VMD分解,然后基于自相关函数脉冲谐波噪声比指标(AIHN)最大化原则进行挑选得到最佳模态分量(BIMF)并对其进行MOMEDA滤波,包络解调后得到故障特征频率,最后将本文所提方法体应用于数值仿真信号上可以明显观察到故障特征频率131.1Hz,应用于实际轴承故障信号可以有效识别轴承故障特征频率294.5Hz,与原始包络谱提取的311Hz以及MCKD提取的320Hz相比更加接近理论故障特征频率294Hz。

    Abstract:

    Aiming at the problem that the weak fault features of rolling bearings are difficult to extract, a bearing fault feature extraction method based on the combination of parameter adaptive optimization variable modal decomposition (VMD) and multi-point optimal minimum entropy deconvolution (MOMEDA) is proposed. Firstly, the VMD decomposition is performed on the rolling bearing time domain vibration signal, and then the best mode component (BIMF) is selected based on the principle of maximizing the index of impulse harmonic noise ratio (AIHN) of autocorrelation function and MOMEDA filtering is performed on it, and the fault characteristic frequency is obtained after envelope deconvolution, and finally the fault characteristic frequency can be clearly observed by applying the proposed method body to the numerical simulation signal 131.1Hz, which can be applied to the actual bearing fault signal to effectively identify the bearing fault characteristic frequency of 294.5Hz, which is closer to the theoretical fault characteristic frequency 294Hz compared with 311Hz extracted by the original envelope spectrum and 320Hz extracted by MCKD.

    参考文献
    相似文献
    引证文献
引用本文

阮强,王贵勇,刘韬,王廷轩.自适应VMD联合MOMEDA的滚动轴承故障提取[J].电子测量技术,2022,45(1):165-171

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-19
  • 出版日期:
文章二维码