基于机器视觉的圆柱形蜂窝陶瓷侧面裂隙检测
DOI:
CSTR:
作者:
作者单位:

江苏大学机械工程学院,镇江,212013

作者简介:

通讯作者:

中图分类号:

TP391.4;TQ174.7

基金项目:

国家自然科学基金(51875266)项目资助


Side crack detection of cylindrical honeycomb ceramics based on machine vision
Author:
Affiliation:

School of mechanical engineering, Jiangsu University, Zhenjiang, 212013, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对圆柱形蜂窝陶瓷侧面裂隙检测困难问题,提出一种基于机器视觉的检测方法。通过对侧面裂隙检测需求分析,选用COMS相机和LED白色平行光源。对采集的图像进行滤波处理,选择中值滤波去除椒盐噪声。根据图像的特点选择ROI区域,使用全局阈值分割算子threshold进行图像分割,采用膨胀方法连接断裂区域。在提取表面缺陷时,先用connection算子对图像区域分割,再选择面积、长度和宽度三个特征对表面缺陷进行提取。将本检测方法与人工检测方法比较分析,试验结果表明在检测样品均为50个时,本方法检测合格、不合格和混合样品所需时间分别为12.50min、6.64min和10.58min,具有更高检测速度,实时性更好;准确率分别为96%、84%和90%,准确率还有待提升,需要进一步的研究。

    Abstract:

    Aiming at the difficulty of side crack detection of cylindrical honeycomb ceramics, a detection method based on machine vision is proposed. Through the demand analysis of side crack detection, COMS camera and LED white parallel light source are selected. The collected image is filtered, and the median filter is selected to remove salt and pepper noise. According to the characteristics of the image, the ROI region is selected, the global threshold segmentation operator threshold is used for image segmentation, and the expansion method is used to connect the fracture region. When extracting surface defects, the connection operator is used to segment the image region, and then three features of area, length and width are selected to extract surface defects. The test results show that when there are 50 samples, the time required for qualified, unqualified and mixed samples by this method is 12.50 min, 6.64 min and 10.58 min respectively, which has higher detection speed and better real-time performance; The accuracy rates are 96%, 84% and 90% respectively. The accuracy rate needs to be improved and needs further research.

    参考文献
    相似文献
    引证文献
引用本文

毛卫平,高伟,顾寄南,雷文桐,胡君杰,方新领.基于机器视觉的圆柱形蜂窝陶瓷侧面裂隙检测[J].电子测量技术,2022,45(2):117-122

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-17
  • 出版日期:
文章二维码