基于滤波与图优化的定位与建图系统
DOI:
CSTR:
作者:
作者单位:

1.中国科学院沈阳自动化研究所机器人学国家重点实验室 沈阳 110016; 2.中国科学院机器人与智能制造创新研究院 沈阳 110169; 3.中国科学院大学 北京 100049; 4.沈阳新松机器人自动化股份有限公司 沈阳 110168

作者简介:

通讯作者:

中图分类号:

TP242.3

基金项目:

辽宁省科学技术计划-工业重大专项“人机协作型工业机器人研发与产业化”项目(2019JH1/10100005),辽宁省“兴辽英才计划”项目“复合机器人关键技术研发”(XLYC1907110)、辽宁省“百千万人才工程”资助项目“机器人三维物体智能识别与抓取技术研究”(2020921001)


Based on filtering and graph optimization positioning and mapping system
Author:
Affiliation:

1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; 2.Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of sciences, Shenyang 110169, China; 3.University of Chinese Academy of Sciences, Beijing 100049, China; Shenyang SIASUN Robot & Automation Co., LTD., Shenyang 110168, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对室外大场景环境建图精度不高,地图出现重影和漂移等问题,提出一种融合滤波与图优化理论实时定位与建图系统。该系统由点云数据预处理、基于滤波紧耦合惯性里程计和后端位姿图优化等三部分构成。首先,点云数据预处理采用随机采样一致性算法分割地面,并提取地面模型参数构建后端优化中的地面约束因子。然后,前端紧耦合惯性里程计采用迭代误差状态卡尔曼滤波,以激光里程计作为观测值,IMU预积分结果作为预测值,通过构建联合函数,滤波融合得到较为精准的激光惯导里程计。最后,后端结合图优化理论引入闭环因子、地面约束因子以及帧与图匹配的里程计因子作为约束条件,构建因子图并优化地图位姿。其中闭环因子采用改进的扫描文本的闭环检测算法进行位置识别,可以降低环境误识别率。本文提出的算法在室外厂区楼栋,停车场以及室内车间等多个场景完成场景建图,在距离,水平和高程三个方向的累积偏差均控制10厘米左右,能够有效解决地图的重影和漂移问题,具有高鲁棒性和高精度。

    Abstract:

    Aiming at the problems of low mapping accuracy and map ghosting and drift in outdoor large scene environment, a simultaneous localization and mapping system integrating filtering and graph optimization theory is proposed. The system consists of three parts: point cloud data preprocessing, filtering based tight coupling inertial odometer and back-end pose map optimization. Firstly, the point cloud data preprocessing uses the random sampling consistency algorithm to segment the ground, extracts the ground model parameters, and constructs the ground constraint factors in the back-end optimization. Then, the front-end tightly coupled inertial odometer adopts iterative error state kalman filter, takes the laser odometer as the observed value and the result of IMU pre-integration as the predicted value, and constructs a joint function to filter and fuse to obtain a more accurate laser inertial odometer. Finally, combined with the graph optimization theory, the closed-loop factor, ground constraint factor and odometer factor matched between frame and graph are introduced as constraints to construct the factor graph and optimize the map pose. The closed-loop factor adopts the improved closed-loop detection algorithm of scanned text for position recognition, which can reduce the environmental false recognition rate. The algorithm proposed in this paper completes scene mapping in multiple scenes such as outdoor plant buildings, parking lots and indoor workshops. The cumulative deviation in the three directions of distance, level and elevation is controlled by about 10 cm, which can effectively solve the problem of map ghosting and drift, and has high robustness and high precision.

    参考文献
    相似文献
    引证文献
引用本文

华智,宋吉来,杜振军,徐方,刘明敏.基于滤波与图优化的定位与建图系统[J].电子测量技术,2022,45(4):99-106

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-06-12
  • 出版日期:
文章二维码