基于Couple熵的抑郁症相干性反馈指标提取
DOI:
CSTR:
作者:
作者单位:

1.常州大学 计算机与人工智能学院、阿里云大数据学院 常州 213164; 2.常州大学 微电子与控制工程学院 常州 213164; 3.苏州大学附属第三医院 常州 215006; 4.浙江省脑机协同智能重点实验室 杭州 310018

作者简介:

通讯作者:

中图分类号:

TP3

基金项目:

江苏省重点研发计划(产业前瞻与关键核心技术)项目(BE2021012-5,BE2021012-2),浙江省脑机协同智能重点实验室开放基金资助(2020E10010-04),江苏省研究生培养创新计划项目(KYCX21_2830)


Coherence feedback index extraction of depression based on couple entropy
Author:
Affiliation:

1. School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, Changzhou University, Changzhou 213164, China; 2. School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China; 3. The Third Affiliated Hospital of Soochow University, Changzhou 215006, China; 4. Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province, Hangzhou 310018, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为探究抑郁症患者脑网络连通特性及其作为在线反馈指标的可行性。首先,采用对容积导体效应不敏感的相干性虚部(IC)构建脑网络,能够有效便捷的避免虚假连接影响。然后,提取具有显著性差异的IC值作为特征集,提出结合Couple熵(CE)和Relief过滤式特征选择方法优化特征集,结合特征与类、特征之间关系信息提高特征集质量。同时,根据自我参照脑网络模块整合特征集,构造在线反馈指标。最后,采用K最近邻(KNN)、支持向量机(SVM)分类器进行对比分析。结果发现,各频段内CE-Relief特征选择方法提取的特征集最小,且分类准确率均高于90%;Alpha频段IC值识别抑郁效果最好,分类准确率可达到100%;自我参照脑网络的前额区平均IC值分类能力在各频段内具有优势且稳定,分类准确率均高于80%。

    Abstract:

    In order to explore the connectivity characteristics of the brain network of patients with depression and its feasibility as an online feedback indicator. First, the brain network is constructed using the imaginary part of coherency (IC) that is not sensitive to the volume conductor effect, this can effectively and conveniently avoid the influence of false connections. Then, the IC value with significant difference is extracted as a feature set, and a combination of Couple entropy (CE) and Relief filtering feature selection method is proposed to optimize the feature set, and the relationship information between features and classes, features and features are combined to improve the quality of feature sets. At the same time, according to the self-referencing brain network module integration feature set, online feedback indicators are constructed. Finally, K-nearest Neighbor (KNN) and support vector machine(SVM) classifiers are used for comparative analysis. The results found that the feature set extracted by the CE-Relief feature selection method in each frequency band is the smallest, and the classification accuracy is higher than 90%; the IC value of the Alpha frequency band has the best effect in identifying depression, and the classification accuracy can reach 100%; the classification ability of the average IC value of the prefrontal area of the self-reference brain network has advantages and stability in each frequency band, and the classification accuracy is higher than 80%.

    参考文献
    相似文献
    引证文献
引用本文

张婷婷,王楠,周天彤,王苏弘,邹凌.基于Couple熵的抑郁症相干性反馈指标提取[J].电子测量技术,2022,45(9):160-167

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-08
  • 出版日期:
文章二维码