基于YOLOv5的轻量化交通标志检测方法
DOI:
CSTR:
作者:
作者单位:

1. 三峡大学 湖北省建筑质量检测装备工程技术研究中心 宜昌 443002;2. 三峡大学 计算机与信息学院宜昌 443002;3.三峡大学 电气与新能源学院 宜昌 443002

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:


Lightweight traffic sign detection algorithm based on yolov5
Author:
Affiliation:

1. Hubei province engineering technology research center for construction quality testing equipment, China three gorges university, Yichang 443002, China ;2. College of computer and information, China three gorges university, Yichang 443002, China;3.College of electrical and new energy, China three gorges university, Yichang 443002, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前交通标志检测算法存在网络复杂度高、计算量大、边缘端部署难度高。提出一种基于YOLOv5的轻量化交通标志目标检测算法。通过增加注意力机制,使用CBAM和CA融合的方式,强化检测模型抗干扰能力;通过FPGM剪枝,对模型进行了压缩,降低计算量、提高推理速度;通过软硬件融合设计,实现YOLOv5s模型与硬件融合,形成一整套完整的移动智能交通标志目标检测系统;结果表明,增加多种注意力机制后,模型精度提高了2.8%。在极限剪枝的情况下,模型仅有0.54MB。在Jetson Nano(20W)的环境下,检测速度达21帧/s,满足实时的交通标志检测。

    Abstract:

    Aiming at the shortcomings of traffic sign detection algorithm, such as high network complexity, large amount of calculation and difficult to be applied at the edge. A lightweight traffic sign target detection algorithm based on YOLOv5 is proposed. By increasing the attention mechanism and using the fusion of CBAM and CA, the anti-interference ability of the detection model is strengthened; Through FPGM pruning, the model is compressed to reduce the amount of calculation and improve the reasoning speed; Through the integration design of software and hardware, YOLOv5s model and hardware are integrated to form a complete set of mobile intelligent traffic sign target detection system; The results show that the accuracy of the model is improved by 2.8% after adding multiple attention mechanisms. In the case of extreme pruning, the model is only 0.54MB. Under the environment of Jetson Nano (20W), the detection speed is up to 21 frames / s, which meets the real-time traffic sign detection.

    参考文献
    相似文献
    引证文献
引用本文

张上,王恒涛,冉秀康.基于YOLOv5的轻量化交通标志检测方法[J].电子测量技术,2022,45(8):129-135

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-10
  • 出版日期:
文章二维码