改进差分进化算法优化多值属性系统诊断策略
DOI:
CSTR:
作者:
作者单位:

江西理工大学软件工程学院 南昌 330000

作者简介:

通讯作者:

中图分类号:

TP206.3

基金项目:

江西省自然科学基金项目(20181BAB202018),研究生创新专项资金项目(XY2021-S168)


Improved differential evolution algorithm to optimize diagnosis strategy of multi-valued attribute system
Author:
Affiliation:

School of Software Engineering, Jiangxi University of Science and Technology, Nanchang 330000

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    测试序列优化问题是故障诊断过程中的关键性问题;针对多值属性系统的测试序列优化问题,采用自适应差分进化算法,结合多值属性系统的特点,分析变异算子在算法中的作用,并设计了个体的编码策略以及两种不同的诊断方式,提出一种将高斯,柯西变异算子与多差分策略进行融合的差分进化算法;通过实验对比分析,结果表明该算法不仅可以很好的应用于多值属性系统,而且在处理二值属性系统的测试序列优化问题时,与已有算法相比,该算法得到的测试点数目更少,期望测试代价更低,可用于多值属性系统求解诊断策略问题。

    Abstract:

    The test sequence optimization problem is a key problem in the fault diagnosis process; for the test sequence optimization problem of the multi-valued attribute system, the adaptive differential evolution algorithm is used, combined with the characteristics of the multi-valued attribute system, analysed the role of mutation operators in algorithms, and designed the individual coding strategy and two different diagnosis methods, proposed a differential evolution algorithm that integrates Gaussian, Cauchy mutation operators and multi-difference strategies; Through experimental comparison and analysis, the results show that the algorithm can not only be well applied to multi-valued attribute systems, but also when dealing with the test sequence optimization problem of binary attribute systems, compared with the existing algorithms, the number of test points obtained by this algorithm is less. It is expected that the test cost is lower, and it can be used to solve the problem of diagnosis strategy in multi-valued attribute systems.

    参考文献
    相似文献
    引证文献
引用本文

邱晓红,徐 聪.改进差分进化算法优化多值属性系统诊断策略[J].电子测量技术,2022,45(10):148-154

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-05-07
  • 出版日期:
文章二维码