多级自适应尺度的U型视网膜血管分割算法
DOI:
CSTR:
作者:
作者单位:

1.江西理工大学 电气工程与自动化学院 江西 赣州 341000;2.江西理工大学应用科学学院 江西 赣州 341000

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金(51365017,61463018);江西省自然科学基金面上项目(20192BAB205084);江西省教育厅科学技术研究重点项目(GJJ170491)


Multi-level adaptive scale U-shaped retinal blood vessel segmentation algorithm
Author:
Affiliation:

1. School of Electrical Engineering and Automation,Jiangxi University of Science and Technology,Ganzhou, Jiangxi,341000,China; 2. School of Applied Sciences,Jiangxi University of Science and Technology,Ganzhou, Jiangxi,341000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对视网膜血管细小和尺度变化复杂的特点,提出一种多级自适应尺度的U型视网膜血管分割算法。首先以编码-解码结构为基础引入残差模块,加强通道特征传播能力。其次在网络底部嵌入多尺度特征提取模块,旨在调整感受野有效地提取多尺度特征。同时在跳跃连接部分增加改进的自适应特征融合模块,促进相邻层次特征之间的有效融合,以提取更多的细小血管特征。最后在解码部分设置侧输出的多级注意结构对多层次特征进行自适应细化。实验结果表明,该算法在DRIVE、STARE和CHASEDB1数据集上准确率分别达到0.9645、0.9694和0.9671,灵敏度分别达到0.8417、0.8465和0.8545,AUC分别达到0.9866、0.9908和0.9877,整体性优于现有算法。

    Abstract:

    Aiming at the characteristics of small retinal vessels and complex scale changes, a multi-level adaptive scale U-shaped retinal vessel segmentation algorithm is proposed. Firstly, the residual module is introduced based on the encoder-decoder structure to enhance the channel feature propagation capability. Secondly, a multi-scale feature extraction module is embedded at the bottom of the network to adjust the receptive field to effectively extract multi-scale features. At the same time, an improved adaptive feature fusion module is added to the skip connection part to promote effective fusion between adjacent hierarchical features to extract more small blood vessel features. Finally, the multi-level attention structure output on the setting side of the decoding part performs adaptive refinement on the multi-level features. The experimental results show that the accuracy of the algorithm on the DRIVE, STARE and CHASEDB1 datasets reaches 0.9645, 0.9694 and 0.9671, respectively, the sensitivity reaches 0.8417, 0.8465 and 0.8545, and the AUC reaches 0.9866, 0.9908 and 0.9877, respectively, and the overall performance is better than the existing algorithms.

    参考文献
    相似文献
    引证文献
引用本文

梁礼明,詹 涛,雷 坤,冯 骏,谭卢敏.多级自适应尺度的U型视网膜血管分割算法[J].电子测量技术,2022,45(13):130-140

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-11
  • 出版日期:
文章二维码