基于块匹配与多级采样的薄片孔隙图像拼接
DOI:
CSTR:
作者:
作者单位:

1.四川大学电子信息学院 成都 610065;2.成都西图科技有限公司 成都 610065

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金(62071315)项目资助


Thin slice pore image mosaic based on block matching and multilevel sampling
Author:
Affiliation:

1.School of Electronic and Information, Sichuan University,Chengdu 610065, China;2.Chengdu Xitu Technology Co.,Ltd,Chengdu 610065,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    微观驱替实验中为了模拟非均质分布的情况,需要将多幅不同的孔隙二值图像拼接为一幅完整图像,而这些拼接图像没有重叠区域,需要根据待拼接图像的纹理信息进行图像拼接修复。针此类问题,本文通过对图像邻域的相关性问题进行研究,提出一种基于块匹配和多级采样的图像拼接方法,该方法结合5个判决准则,以修复孔隙图像边界间的弯曲轮廓和不规则纹理,并通过粗尺度到细尺度的图像拼接过程,使得最终拼接完成的薄片孔隙图像能够更加真实地反映岩心特征。为了验证本研究方法的有效性,将本文所提算法与现有的传统图像修复算法和基于深度学习的图像修复方法进行对比,并通过主观视觉与客观指标对图像拼接实例的结果进行评估,结果表明本研究提出的算法在PSNR和SSIM指标上优于现有的图像修复算法,分别提高了6.08dB和0.015,并且在图像纹理的自然过渡以及整体结构的一致性方面有更好的表现。

    Abstract:

    In order to simulate heterogeneous distribution in microscopic displacement experiment, it is necessary to splice several different pore binary images into a complete image. However, these spliced images do not have overlapping areas, so image splicing and restoration should be carried out according to the texture information of the image to be spliced. This paper studies the correlation of image neighborhood and proposes an image Mosaic method based on block matching and multi-level sampling. This method combines five decision criteria to repair curved contours and irregular textures between pore image boundaries. Through the image Mosaic process from coarse to fine scale, The final spliced thin section pore image can reflect the core characteristics more truly. In order to verify the effectiveness of this research method, the proposed algorithm is compared with existing traditional image repair algorithms and image repair methods based on deep learning, and the results of image Mosaic examples are evaluated by subjective visual and objective indicators. The results show that the proposed algorithm is superior to the existing image restoration algorithms in PSNR and SSIM, improving 6.08dB and 0.015 respectively, and has better performance in natural texture transition and overall structure consistency.

    参考文献
    相似文献
    引证文献
引用本文

邓 亮,滕奇志,何海波.基于块匹配与多级采样的薄片孔隙图像拼接[J].电子测量技术,2022,45(15):106-114

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-08
  • 出版日期:
文章二维码