基于Iradon-CNN的变压器局部放电状态识别方法
DOI:
CSTR:
作者:
作者单位:

华北电力大学 动力工程系 河北保定 071003

作者简介:

通讯作者:

中图分类号:

TP183;TM835;TM41

基金项目:

中央高校基本科研业务费(2020MS145)基于深度学习的风电机组维护决策优化研究


Transformer partial discharge state identification method based on Iradon-CNN
Author:
Affiliation:

Department of Power Engineering, North China Electric Power University, Baoding 071003, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决变压器局部放电故障所带来的安全隐患,提出了一种基于逆拉冬变换(Inverse Radon transform,Iradon)-卷积神经网络(Convolutional Neural Networks,CNN)的变压器局部放电信号图像识别方法。针对三种故障进行了局部放电实验,首先通过共振稀疏分解对局部放电信号进行分解,获取低共振分量,然后将其转换成Iradon图像,最后利用CNN自适应地提取Iradon图像的特征信息。结果表明,该方法能够准确提取信号特征,具有强大的数据处理和识别功能,并为变压器局部放电状态的识别提供了丰富的信息,提高了学习效果和识别精度。

    Abstract:

    In order to solve the potential safety hazards caused by transformer partial discharge fault, an image recognition method of transformer partial discharge signal based on Inverse Radon transform (Iradon)-Convolutional Neural Networks (CNN) was proposed. Partial discharge experiments were carried out for three kinds of faults. First, the partial discharge signal was decomposed by resonance sparse decomposition to obtain low resonance components, which were then converted into Iradon images. Finally, CNN was used to adaptively extract the feature information of Iradon images. The results show that, this method can accurately extract signal features, has powerful data processing and identification functions, and provides rich information for the identification of partial discharge states of transformers, and improves the learning effect and identification accuracy.

    参考文献
    相似文献
    引证文献
引用本文

朱霄珣,林佳伟,刘宝平,李震涛,高晓霞.基于Iradon-CNN的变压器局部放电状态识别方法[J].电子测量技术,2022,45(17):36-42

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-02
  • 出版日期:
文章二维码