基于多智能体Actor-Critic算法的异构网络能效优化
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学, 南京 210044; 2.无锡学院 无锡 214105; 3.江南大学轻工过程先进控制教育部重点实验室,无锡 214122; 4.北京邮电大学网络与交换技术国家重点实验室,北京 100876

作者简介:

通讯作者:

中图分类号:

TN911

基金项目:

国家自然科学基金(No.61571108);网络与交换技术国家重点实验室(北京邮电大学)开放课题资助项目(No.SKLNST-2020-1-13);南京信息工程大学无锡研究生创新实践项目(WXCX202101)


Energy Efficiency Optimization of Heterogeneous Networks Based on Multi-Agent Actor-Critic Algorithm
Author:
Affiliation:

1. Nanjing University of Information Science & Technology, Nanjing 210044, China; 2. Wuxi University, Wuxi 214105, China; 3. Key Laboratory of Advanced Control of Light Industry Process, Ministry of Education, Jiangnan University, Wuxi 214122, China; 4. State Key Laboratory of Network and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了最大限度地提高异构网络(Heterogeneous Hetworks,HetNets)的能量利用率,本文将能效优化问题设计为一个多级决策问题,根据优化目标的资源分配,首先将初始问题分解为对参数ABS(几乎空白子帧,Almost Blank Subframe)比例和CRE(小区间范围扩展,Cell Range Expansion)进行优化的两个子问题,采用多智能体Actor-Critic(Multi-Agent Actor-Critic,MAAC)算法对子问题进行求解,然后通过迭代各优化子问题的解,解决初始优化问题。在参数优化过程中,将单个小基站作为一个智能体,采用MAAC算法对各自CRE寻找最优解,实现小区间异步CRE优化。实验结果表明,该方法在保持能效稳定提高的前提下,相比较于表格式Q学习的循环Q学习算法,其收敛速度提高了40%,并且通过异步优化CRE的方式取得了基站间更均衡的负载。

    Abstract:

    In order to maximize energy efficiency in HetNets (Heterogeneous Networks), the problem of energy efficiency optimization is designed as a multistage decision problem in this paper. According to the resource allocation of the optimization goal, the initial problem is decomposed into two sub-problems that optimize the parameters ABS (Almost Blank Subframe) ratio and CRE (Cell Range Expansion). The MAAC (Multi-agent Actor-Critic) algorithm is used to solve the sub-problem, and then the initial optimization problem is solved by iterating over the solution of each optimization sub-problem. In the process of parameter optimization, a single small base station is used as an agent, and the MAAC algorithm is used to find the optimal solution for each CRE, so as to realize the asynchronous CRE optimization between cells. Experimental results show that compared with the Turbo Q-learning algorithm, the convergence speed of the proposed method is increased by 40%, and the load between small base stations is more balanced through asynchronous optimization of CRE.

    参考文献
    相似文献
    引证文献
引用本文

张茜茜,李君,李正权,于心远,沈国丽,刘子怡,刘兴鑫.基于多智能体Actor-Critic算法的异构网络能效优化[J].电子测量技术,2022,45(22):12-18

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-19
  • 出版日期:
文章二维码