基于Yolo_ES的垃圾分类目标检测模型
DOI:
CSTR:
作者:
作者单位:

1.河南理工大学电气工程与自动化学院 焦作 454000; 2.河南理工大学河南省煤矿装备智能检测与 控制重点实验室 焦作 454000

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

国家自然科学基金(U1804417)项目资助


Garbage classification target detection model based on Yolo_ES
Author:
Affiliation:

1.School of Electrical Engineering and Automation, Henan Polytechnic University,Jiaozuo 454000, China; 2.Henan Key Laboratory of Intelligent Detection and Control of Coal Mine Equipment, Henan Polytechnic University,Jiaozuo 454000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    垃圾分类问题目前已被政府和社会广泛关注,面对分拣过程中对垃圾类别实时性和准确性判断的需求,提出了一种Yolo_ES目标检测算法。该算法以Yolov4为基础网络,首先使用EfficientNet作为主干特征提取网络,实现算法的轻量化;其次通过注意力机制ECA对MBConv模块进行重构,筛选出高质量的信息,增强模型的特征提取能力并降低了参数量;同时针对最大池化易丢失细节信息的问题,使用SoftPool对SPP模块中的MaxPool层进行替换,保留更多细粒度特征信息。在自制的HPU_WASTE垃圾分类数据集上进行实验,结果表明,Yolo_ES模型相比于Yolov4基础网络mAP从91.81%提升到了96.06%,模型大小压缩了75.45%同时每张图片处理时间为58ms;与其他目标检测网络相比,该模型具有更好的鲁棒性和更佳检测性能。

    Abstract:

    At present, garbage classification has been widely concerned by the government and society. Facing the demand for real-time and accurate judgment of waste classification in the sorting process, a Yolo_ES target detection algorithm was proposed. The algorithm takes Yolov4 as the basic network. Firstly, EfficientNet is used as the backbone feature extraction network to realize the lightweight of the algorithm; secondly, the MBConv module is reconstructed by the attention mechanism ECA to filter out the highquality information, enhance the feature extraction ability of the model and reduce the number of parameters; at the same time, aiming at the problem that it is easy to lose detailed information in the max-pooling, the SoftPool is used to replace the MaxPool layer in the SPP module to retain more fine-grained feature information. The experiments are conducted on the self-made HPU_WASTE garbage classification dataset, and the results show that compared with the Yolov4 basic network, Yolo_ES model increases the map from 91.81% to 96.06%, and the model size is compressed by 75.45%. Meanwhile, the processing time of each image is 58ms; Compared with other target detection networks, this model has better robustness and better detection performance.

    参考文献
    相似文献
    引证文献
引用本文

范金豪,崔立志.基于Yolo_ES的垃圾分类目标检测模型[J].电子测量技术,2023,46(1):160-166

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-11
  • 出版日期:
文章二维码