基于GLCM和FCM算法融合的铣削零件缺陷提取方法
DOI:
CSTR:
作者:
作者单位:

上海工程技术大学机械与汽车工程学院,上海,201620

作者简介:

通讯作者:

中图分类号:

TP3

基金项目:


Defect Extraction Method of Milling Parts Based on the Fusion of GLCM and FCM Algorithms
Author:
Affiliation:

School of mechanical and automotive engineering, Shanghai University Of Engineering Science,Shanghai,201620,china

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    零件质量合格与否影响整个装配体的服役寿命,如何快速准确的检测零件质量是否合格已经成为研究热点之一,机器视觉缺陷检测应用日益广泛,但由于铣削后零件纹理背景存在的缘故,常常导致零件表面缺陷的检测不够精准。本文提出一种将灰度共生矩阵(GLCM)和模糊C均值聚类算法(FCM)相结合的新型图像表面缺陷提取方法,利用改进后的灰度共生矩阵将缺陷与铣削背景的对比度提高,再针对缺陷与铣削背景之间的灰度差较大这一特性,使用模糊C均值聚类的方法对图像进行分割。该算法可以有效区分加工缺陷与加工纹理,并快速准确的提取零件缺陷特征。通过缺陷提取实验,并与传统的分割算法对比,可得出该算法能够快速的提取铣削零件表面缺陷,并且对提取多类缺陷具有良好的适应能力。

    Abstract:

    Whether the quality of parts is qualified or not affects the service life of the entire assembly. How to quickly and accurately detect whether the quality of parts is qualified has become one of the research hotpots. Machine vision defect detection is increasingly used, but due to the existence of the texture background of the parts after milling, It often leads to insufficient precision in the detection of surface defects of parts. This paper proposes a new image surface defect extraction method that combines the gray-level co-occurrence matrix and the fuzzy C-means clustering algorithm. The improved gray-level co-occurrence matrix is used to increase the contrast between the defect and the milling background, and then the defect and the milling background are used to increase the contrast. For the feature of large gray scale difference between milling backgrounds, fuzzy C-means clustering method is used to segment the image. The algorithm can effectively distinguish processing defects and processing textures, and quickly and accurately extract part defect features. Through the experiment of defect extraction, and compared with the traditional segmentation algorithm, it can be concluded that the algorithm can quickly extract the surface defects of milling parts, and has good adaptability to extract multiple types of defects. Keywords: Milled parts; machine vision; Surface defects; feature extraction; intelligent algorithm.

    参考文献
    相似文献
    引证文献
引用本文

蔡航,茅健,杨杰,李彬鹏.基于GLCM和FCM算法融合的铣削零件缺陷提取方法[J].电子测量技术,2022,45(23):166-173

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-08
  • 出版日期:
文章二维码