基于IMU的机械臂末端执行器姿态优化
DOI:
CSTR:
作者:
作者单位:

1.四川轻化工大学自动化与信息工程学院 自贡 643000; 2.人工智能四川省重点实验室 自贡 643000

作者简介:

通讯作者:

中图分类号:

TP241.2

基金项目:

四川省应用基础研究项目(2019YJ00413)资助


IMU-based attitude optimization of the robotic arm end effector
Author:
Affiliation:

1.School of Automation and Information Engineering, Sichuan University of Science & Engineering,Zigong 643000, China; 2.Artificial Intelligence Key Laboratory of Sichuan Province, Zigong 643000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了补偿机器人关节扭转不足和末端执行器连接等造成的末端执行器姿态误差,提出一种基于惯性测量单元在线获取末端姿态的方法。首先将整个机械臂系统的运动过程分为静态和动态过程。静态时,由于外部加速度噪声较小,提出使用加速度计根据当地重力估计末端执行器姿态角的方法。动态时,针对系统外部加速度噪声和陀螺仪零漂、比例因子误差等影响测量精度的问题,提出一种基于噪声统计方法的自适应扩展卡尔曼滤波算法。根据加速度计的测量值,更新观测噪声方差阵的权重,从而调节卡尔曼增益,降低加速度噪声对测量精度的影响。实验结果表明:静态时,通过静态算法估算的姿态角误差平均值为0.07°、0.05°、0.2°;动态时,本文算法可以很好补偿外部加速度的对姿态的影响,能有效提高姿态测量精度,相比于EKF算法,姿态角平均误差分别降低了2.69°、1.01°、0.5°。

    Abstract:

    In order to compensate for the end effector attitude error caused by insufficient torsion of the robot joint and the end effector connection, a method based on inertial measurement unit to obtain the end attitude online is proposed. First of all, the motion process of the entire robotic arm system is divided into static and dynamic processes. At static, due to the small external acceleration noise, a method for estimating the attitude angle of the end effector based on local gravity using an accelerometer is proposed. In dynamic time, an adaptive extended Kalman filtering algorithm based on noise statistics is proposed for the problems of external acceleration noise, gyroscope zero drift, and scale factor error that affect the measurement accuracy. Based on the measurements of the accelerometer, the weights of the observed noise variance array are updated to adjust the Kalman gain and reduce the effect of acceleration noise on the measurement accuracy. Experimental results show that the average attitude angle error estimated by the static algorithm is 0.07°, 0.05°, 0.2°; In dynamic time, the proposed algorithm can compensate well for the influence of external acceleration on attitude, and can effectively improve the attitude measurement accuracy, compared with the EKF algorithm, the average error of attitude angle is reduced by 2.69°, 1.01°, 0.5°.

    参考文献
    相似文献
    引证文献
引用本文

汪坤,张国良,张自杰,王艺成.基于IMU的机械臂末端执行器姿态优化[J].电子测量技术,2023,46(1):72-77

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-11
  • 出版日期:
文章二维码