基于图优化的激光惯导紧耦合SLAM研究
DOI:
CSTR:
作者:
作者单位:

1.南京信息工程大学自动化学院 南京 210000; 2.南京信息工程大学遥感与测绘学院 南京 210000; 3.无锡学院轨道交通学院 无锡 214000; 4.南京信息工程大学无锡研究院 无锡 214000

作者简介:

通讯作者:

中图分类号:

TP391.9

基金项目:

第十六批次江苏省“六大人才商峰”高层次人才项目(XYDXX-045)、2020年无锡市科技发展资金(N20201011)、南京信息工程大学无锡校区研究生创新实践项目(WXCX202020)资助


Tightly coupled SLAM for laser inertial navigation based on graph optimization
Author:
Affiliation:

1.School of Automation, Nanjing University of Information Engineering,Nanjing 210000, China; 2.School of Remote Sensing and Surveying and Mapping, Nanjing University of Information Engineering, Nanjing 210000, China; 3.School of Rail Transit, Wuxi University,Wuxi 214000, China; 4.Nanjing University of Information Engineering, Wuxi Research Institute,Wuxi 214000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现有的激光惯导里程计大多采用滤波的松耦合融合方法,在大场景建图中会存在一定的运动估计漂移,导致定位与建图精度降低。针对这一问题提出了一种基于图优化的激光惯导紧耦合里程计与建图方法。在前端依次进行点云畸变补偿、点云聚类分割、地面与特征提取。在后端采用图优化方法融合IMU预积分、激光里程计和回环检测信息完成地图构建。最后利用Kitti数据集和自采集数据对LOAM、LeGO-LOAM和本文方法在里程计精度和回环检测效果上进行了对比分析。实验结果表明本文方法在定位与建图精度上相比于LOAM和LeGO-LOAM分别提高了45%和35%以上,有着更优的鲁棒性。

    Abstract:

    Most of the existing laser inertial navigation odometers adopt the filtering loose coupling fusion method, and there will be a certain motion estimation drift in large scene mapping, which will lead to the reduction of positioning and mapping accuracy. Aiming at this problem, a close-coupled odometer and mapping method of laser inertial navigation system based on graph optimization is proposed. At the front end, point cloud distortion compensation, point cloud clustering segmentation, ground and feature extraction are carried out in turn. At the back end, the map optimization method is used to integrate IMU pre-integration, laser odometer and loop detection information to complete the map construction. Finally, Kitti data set and self-collected data are used to compare and analyze LOAM, LeGO-LOAM and the method of this paper in odometer accuracy and loop detection effect. Experimental results show that compared with LOAM and LeGO-LOAM, the positioning and mapping accuracy of this method is improved by 45% and 35% respectively, and it has better robustness.

    参考文献
    相似文献
    引证文献
引用本文

郑川川,柯福阳,汤琴琴.基于图优化的激光惯导紧耦合SLAM研究[J].电子测量技术,2023,46(1):35-42

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-11
  • 出版日期:
文章二维码