基于改进YOLOv5与CRNN的电表示数识别
DOI:
CSTR:
作者:
作者单位:

五邑大学智能制造学部 江门 529030

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金青年基金(51905384)项目资助


Electric meter indication recognition based on improved YoLov5 and CRNN
Author:
Affiliation:

Intelligent Manufacturing Department of Wuyi University,Jiangmen 529030,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高电表示数检测和识别的准确率,基于轻量高效的YOLOv5s网络提出了改进的目标检测网络。首先,在特征提取阶段添加CBAM注意力机制对图像的重要特征进行自主学习,并设计了一种特征融合网络D-BiFPN加强了对深层特征的提取;其次,引入CIOU损失函数,使目标框的回归更加稳定。对CRNN文本识别算法的主干网络进行改进,模型保持轻量化的特点,在移动端部署上有良好的前景。最后,在电表数据集上测试得出:相比于YOLOv5算法,所提出的算法精度均值提升了5.13%;相比于CRNN算法,所提出的文本识别算法准确率提升了7.4%。实验结果表明,改进后的文本检测算法对电表示数的检测精度较高,文本识别算法准确率和速度较高,满足电表示数检测识别的实际应用需求。

    Abstract:

    In order to improve the accuracy of meter reading detection and recognition, an improved target detection network is proposed based on the lightweight and efficient YOLOv5s network. Firstly, in the feature extraction stage, CBAM attention mechanism is added to learn the important features of the image, and a feature fusion network D-BiFPN is designed to enhance the extraction of deep features; Secondly, the CIOU loss function is introduced to make the regression of the target box more stable. The backbone network of CRNN text recognition algorithm is improved. The model maintains the characteristics of lightweight, and has a good prospect in the deployment of mobile terminals. Finally, the test on the meter data set shows that compared with the original YOLOv5 algorithm, the average accuracy of the proposed algorithm is improved by 5.13%; Compared with the original CRNN algorithm, the accuracy of the proposed text recognition algorithm is improved by 7.4%. The experimental results show that the proposed text detection algorithm has high detection accuracy and stability, and the text recognition algorithm has high accuracy and speed, which can meet the application requirements of meter reading recognition.

    参考文献
    相似文献
    引证文献
引用本文

黄辉,肖豪,王琼瑶,吴建强,梁志龙.基于改进YOLOv5与CRNN的电表示数识别[J].电子测量技术,2023,46(1):173-180

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-11
  • 出版日期:
文章二维码