基于改进YOLOX-S的交通标志识别
DOI:
CSTR:
作者:
作者单位:

上海工程技术大学机械与汽车工程学院 上海 201600

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:


Traffic sign recognition based on improved YOLOX-S
Author:
Affiliation:

College of Mechanical and Automotive Engineering, Shanghai University of Engineering and Technology,Shanghai 201600, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    交通标志是车辆在规范行驶过程中的一个重要指导,交通标志识别是无人驾驶汽车环境感知中必不可少的重要内容。本文基于YOLOX-S算法进行改进,通过在主干网络末端添加CBAM注意力机制模块,强化特征提取网络所得到的特征;使用Focal Loss函数,更好地消除正负样本不均衡问题,挖掘难例样本;使用GIOU损失函数,解决了原损失函数存在的优化不一致和尺度敏感的问题,进一步提高模型的识别准确率。本文基于TT100K数据集对提出算法进行了实验,对比了几种主流算法与本文算法的识别精度,实验结果表明在具有较高FPS的前提下,本文算法对大部分目标类别的检测精度都有所提升。相较于YOLOX-S模型,所提模型的coco精度评价指标mAP_50提升1.9%,mAP_50:95提升2.1%,FPS为35.6。证明了所做改进的有效性。

    Abstract:

    Traffic sign is an important guide for vehicles in the process of standardized driving. Traffic sign recognition is an essential and important content in the environmental perception of driverless vehicles. Based on YOLOX-S algorithm, this paper strengthens the features obtained from the feature extraction network by adding CBAM attention mechanism module at the end of the backbone network. Utilizes Focal Loss function to better eliminate the imbalance between positive and negative samples and focuses on samples difficult to classify. Using the GIOU Loss function, the problems of inconsistent optimization and scale sensitivity of the original loss function are solved, and the recognition accuracy of the model is further improved. In this paper, the proposed algorithm is tested based on TT100k data set, and the recognition effects are compared with which of several mainstream algorithms. Experimental results show that under the premise of high FPS, the detection accuracy of most target categories is improved. Compared with the YOLOX-S model, the coco accuracy evaluation index Map_50 of the proposed model increased by 1.9%, Map_50:95 increased by 2.1%, and FPS is 35.6. The effectiveness of the improvement is proved.

    参考文献
    相似文献
    引证文献
引用本文

刘凯,罗素云.基于改进YOLOX-S的交通标志识别[J].电子测量技术,2023,46(1):112-191

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-11
  • 出版日期:
文章二维码