基于改进YOLOv5算法的道路伤损检测
DOI:
CSTR:
作者:
作者单位:

1.重庆交通大学智慧城市学院 重庆 400074; 2.中国测绘科学研究院 北京 100036

作者简介:

通讯作者:

中图分类号:

TP18;TP391.41;U418

基金项目:

国家重点研发计划项目(2019YFB2102500)、山地城镇建设与新技术教育部重点实验室开放基金(LNTCCMA-20220112)项目资助


Road damage detection based on improved YOLOv5 algorithm
Author:
Affiliation:

1.School of Smart City,Chongqing Jiaotong University,Chongqing 400074, China; 2.Chinese Academy of Surveying & Mapping,Beijing 100036, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    道路伤损检测是道路养护过程中的重要基础性环节,传统道路伤损检测方法存在检测成本高且效率低的缺陷。为准确快速检测道路伤损状况,提出了一种基于YOLOv5改进的道路伤损检测模型YOLO-C-α。通过引入注意力机制CBAM模块,提高检测模型的特征提取及特征融合能力,改善模型对道路损伤小目标的漏检问题;引入α-IoU损失函数替换原始网络CIOU损失函数,降低预测框的回归损失,提升预测框的定位精度。基于RDD2020道路伤损检测数据集展开对比实验,结果显示:YOLO-C-α模型平均准确度达到60.3%,相比于原始模型平均精度提升1.4%, 其F1值为60.2,相比于原始模型提升1%,且对于不同天气状况下的路面损伤均有较高的检测性能,实验环境每张图片的检测速度为6.3 ms,模型大小40.6 Mb。结果表明:本文基于YOLOv5m改进的算法抗干扰能力较强,能更准确地检测出多种天气状况下道路伤损目标,可为道路伤损实时检测及智慧化道路养护提供参考。

    Abstract:

    Road damage detection is an important basic link in the process of road maintenance. Traditional road damage detection methods have the defects of high detection cost and low efficiency. In order to accurately and quickly detect road damage, an improved road damage detection model YOLO-C-α based on YOLOv5 is proposed. By introducing the attention mechanism CBAM module, the feature extraction and feature fusion capabilities of the detection model are improved, and the problem of missed detection of small targets with road damage is improved; the α-IoU loss function is introduced to replace the CIOU loss function of the original network to reduce the regression loss of the prediction frame, to improve the positioning accuracy of the prediction box. Based on the RDD2020 road damage detection data set, a comparative experiment was carried out. The results showed that the average accuracy of the YOLO-C-α model reached 60.3%, which was 1.4% higher than the average accuracy of the original model. Its F1 value was 60.2, compared with the original model. It is improved by 1%, and has high detection performance for pavement damage under different weather conditions. The detection speed of each image in the experimental environment is 6.3 ms, and the model size is 40.6 Mb. The results show that the improved algorithm based on YOLOv5m has strong anti-interference ability and can more accurately detect road damage targets under various weather conditions, which can provide a reference for real-time road damage detection and intelligent road maintenance.

    参考文献
    相似文献
    引证文献
引用本文

张用川,牟凤云,陈建坤,仇阿根,冉蔚.基于改进YOLOv5算法的道路伤损检测[J].电子测量技术,2023,46(4):161-168

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-22
  • 出版日期:
文章二维码