基于YOLOv5的雾霾天气下交通标志识别
DOI:
CSTR:
作者:
作者单位:

1.三峡大学计算机与信息学院 宜昌 443002; 2.湖北省建筑质量检测装备工程技术研究中心 宜昌 443002

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家自然科学基金新疆联合基金重点项目(U1703261)资助


Traffic sign recognition under fog weather based on YOLOv5
Author:
Affiliation:

1.College of Computer and Information,China Three Gorges University,Yichang 443002, China; 2.Hubei Province Engineering Technology Research Center for Construction Quality Testing Equipment,Yichang 443002, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对雾霾天气下道路交通标志识别难度大、精确度较低的问题,提出一种基于YOLOv5的雾霾天气交通标志识别模型。首先在YOLOv5原始模型上融入卷积注意力机制,在空间维度和通道维度上进行特征增强,抑制雾霾天气对模型的干扰;然后将BiFPN作为neck层中的特征融合结构,更加充分地融合多尺度特征,减少目标信息丢失;并选用CIoU作为YOLOv5的损失函数提高定位能力;使用K-means聚类算法在TT100K和CODA数据集重新获取锚框值,加快模型收敛速度。实验结果表明,改进后模型识别精度达到92.5%,比YOLOv5提升5.6%,在雾霾天气下仍能准确识别交通标志,速度达27 FPS,能够进行实时检测。

    Abstract:

    Aiming at the problem of high difficulty and low accuracy in road traffic sign recognition under haze weather, a traffic sign recognition model based on YOLOv5 was proposed. Firstly, the convolutional attention mechanism was integrated into the original YOLOv5 model to enhance features in the spatial dimension and channel dimension to suppress the interference of haze weather on the model. Then, BiFPN is used as the feature fusion structure in neck layer to more fully fuse multi-scale features and reduce the loss of target information. CIoU is used as the loss function of YOLOv5 to improve the positioning ability. K-means clustering algorithm was used to re-obtain anchor frame values in TT100K and CODA datasets to accelerate the convergence speed of the model. The experimental results show that the recognition accuracy of the improved model reaches 92.5%, which is 5.6% higher than that of YOLOv5, and it can still accurately identify traffic signs in haze weather. and the speed can reach 27 FPS, which can be used for real-time detection.

    参考文献
    相似文献
    引证文献
引用本文

朱开,陈慈发.基于YOLOv5的雾霾天气下交通标志识别[J].电子测量技术,2023,46(8):31-37

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-02-07
  • 出版日期:
文章二维码