基于ICEEMDAN-CNN的非视距识别方法
DOI:
CSTR:
作者:
作者单位:

北京信息科技大学高动态导航技术北京市重点实验室 北京 100192

作者简介:

通讯作者:

中图分类号:

TN92

基金项目:

国家重点研发计划课题(2020YFC1511702)项目资助


NLOS recognition method based on ICEEMDAN-CNN
Author:
Affiliation:

Beijing Key Laboratory of High Dynamic Navigation Technology, Beijing Information Science & Technology University, Beijing 100192, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在超宽带室内定位中,受复杂室内环境下各种障碍物的干扰导致信号处于非视距场景传播,进而产生定位误差。针对非视距传播对室内定位精度影响的问题,提出了一种基于ICEEMDAN的非视距识别方法。首先对信道脉冲响应进行模态分解,得到含有不同尺度特性的IMF,其次利用皮尔森相关系数法选取部分IMF进行重构,保留较为有效的信息,并对重构信号进行小波变换获得有效的时频特征,最后通过构建卷积神经网络识别非视距信号。实验数据基于802154a UWB模型和开源数据集,结果表明所提出的识别方法平均准确率达到了 985%,与其他算法相比模拟数据集提高了56%,PDS数据集提高了143%,验证了所提出识别方法的有效性。

    Abstract:

    In ultra-wideband indoor positioning, the signal propagates in the non-line-of-sight scene due to the influence of various obstacles in the complex indoor environment, resulting in positioning errors. Aiming at the issue of the influence of nonlineofsight propagation on indoor positioning accuracy, a nonlineofsight recognition method based on improved complete ensemble empirical mode decomposition with ICEEMDAN was proposed. Firstly, the channel impulse response is completely decomposed to obtain the IMF with different scale characteristics. Secondly, the Pearson correlation coefficient method is used to select some IMFs for reconstruction to retain more effective information, and the wavelet transform is used to obtain effective timefrequency characteristics of the reconstructed signal. Finally, the nonlineofsight signal is identified by constructing a convolutional neural network. The experimental data are based on the 802154a UWB model and opensource data set. The experimental results indicate that the average accuracy of the proposed recognition method reaches 98.5%, which is 5.6% higher than that of other algorithms in the simulation data set and 14.3% higher than that in the PDS data set, which verifies the effectiveness of the proposed recognition method.

    参考文献
    相似文献
    引证文献
引用本文

尚德良,赵旭,李连鹏,刘文.基于ICEEMDAN-CNN的非视距识别方法[J].电子测量技术,2023,46(10):61-67

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-09
  • 出版日期:
文章二维码