基于图注意力网络的输电线路故障诊断
DOI:
CSTR:
作者:
作者单位:

上海电力大学电子与信息工程学院 上海 200090

作者简介:

通讯作者:

中图分类号:

TM726

基金项目:

国家自然科学基金(61401269)项目资助


Fault diagnosis in transmission line based on graph attention network
Author:
Affiliation:

School of Electronics & Information Engineering,Shanghai University of Electric Power,Shanghai 200090,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以往基于深度学习的输电线路故障诊断,依赖数字信号处理技术提取故障特征。为了改进前述方法,引入了图深度学习理论,提出了一种基于图注意力网络(GAT)的智能故障诊断方法。将原始三相电流电压信号转化为图数据,利用多个图注意力层自动提取特征信息,从而建立了数据从输入端到输出端之间的映射关系,实现输电线路端到端的故障诊断。在400 kV三相输电线路和IEEE13总线电网系统上验证该方法的准确性和有效性,分别对五种短路故障和无故障情况设置不同初始相角、过渡电阻和故障位置进行仿真分析。结果表明,该方法故障诊断准确率达到9975%以上,与现有几种智能故障诊断算法对比其性能最优。同时,该方法在不同白噪声下依然保持较高的故障识别率,具有良好的鲁棒性和泛化能力,为电力输电线路诊断技术提供了一定的研究思路。

    Abstract:

    The previous deep learning fault diagnosis methods for transmission lines rely on digital signal processing technology to extract fault features. In order to improve the above methods, this paper introduces graph deep learning theory and proposes an endtoend intelligent fault diagnosis method based on graph attention network. The original threephase current and voltage signals are converted into graph data, and the feature is automatically extracted using multiple graph attention layers, thus establishing the mapping relationship between the data from input to output, and realizing endtoend fault diagnosis of transmission lines. The accuracy and effectiveness of the method are verified on the 400 kV threephase transmission line and the IEEE13 bus power grid system, and the simulation analysis is carried out for five kinds of short circuit fault and no fault conditions with different initial phase angle, transition resistance and fault location. The results show that the fault diagnosis accuracy of this method is more than 99.75%, and its performance is the best compared with several existing intelligent fault diagnosis algorithms. At the same time, the method still maintains high fault identification rate under different white noise, has good robustness and generalization ability, and provides a certain research idea for power transmission line diagnosis technology.

    参考文献
    相似文献
    引证文献
引用本文

唐闽,高彦杰,汪长虹.基于图注意力网络的输电线路故障诊断[J].电子测量技术,2023,46(18):92-99

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-10
  • 出版日期:
文章二维码