基于多尺度排列熵和IWOA-SVM的滚动轴承故障诊断
DOI:
CSTR:
作者:
作者单位:

郑州大学管理学院 郑州 450001

作者简介:

通讯作者:

中图分类号:

TH133.33

基金项目:

NSFC联合基金重大项目(U1904210)、河南省高等学校重点科研项目(23A630006)资助


Rolling bearing fault diagnosis based on multiscale permutation entropy and IWOA-SVM
Author:
Affiliation:

School of Management,Zhengzhou University,Zhengzhou 450001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对滚动轴承信号表现出的非线性和非平稳性特征问题,合理的特征选择可提高故障诊断率,提出基于多尺度排列熵(MPE)与改进鲸鱼算法(IWOA)优化支持向量机(SVM)的故障诊断模型。首先,通过变分模态分解(VMD)进行信号降噪预处理,计算多尺度排列熵进行信号特征重构;其次,引入惯性动态权重对鲸鱼算法进行改进,通过训练SVM参数,建立IWOA-SVM故障诊断模型;最后用美国凯斯西储大学轴承数据集进行仿真。结果表明,相较于多尺度熵,MPE可表征的故障特征信息更加丰富,故障识别率提高了2.1%;与同类优化算法相比,采用IWOA对SVM进行优化的故障诊断模型,收敛速度快、训练时间短、故障识别精度高,可对滚动轴承进行有效诊断。

    Abstract:

    For the nonlinear and non-stationary characteristics of rolling bearing signals, reasonable feature selection can improve the fault diagnosis rate. A fault diagnosis model based on multiscale permutation entropy (MPE) and improved whale algorithm (IWOA) was proposed to optimize support vector machine (SVM). Firstly, signal denoising was preprocessed by VMD, and multi-scale permutation entropy was calculated to reconstruct signal features. Secondly, inertial dynamic weights were introduced to improve the whale algorithm, and SVM parameters were trained to establish the IWOA-SVM fault diagnosis model. Finally, the bearing data set of Case Western Reserve University was used for simulation experiments. The results show that, compared with multi-scale entropy, MPE can represent more abundant feature information, and the fault recognition rate is improved by 2.1%. Compared with other optimization algorithms, the fault diagnosis model optimized by IWOA based on SVM has fast convergence speed, short training time and high fault recognition accuracy, which can effectively diagnose rolling bearings.

    参考文献
    相似文献
    引证文献
引用本文

张炎亮,李营.基于多尺度排列熵和IWOA-SVM的滚动轴承故障诊断[J].电子测量技术,2023,46(19):29-34

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-15
  • 出版日期:
文章二维码