无人化起重装卸的目标物实例分割模型研究
DOI:
CSTR:
作者:
作者单位:

1.广州吉欧电子科技有限公司 广州 510530; 2.广州黑格智造信息科技有限公司 广州 510530; 3.广东工业大学机电工程学院 广州 510006

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

佛山市2021 年高校教师特色创新研究项目(2021DZXX15)资助


Instance segmentation model of uncertain object in unmanned lifting and handling scenarios
Author:
Affiliation:

1.Guangzhou Geoelectron Technology Co., Ltd.,Guangzhou 510530, China; 2.Guangzhou Geoelectron Technology Co., Ltd.,Guangzhou 510530, China; 3.School of Electromechanical Engineering, Guangdong University of Technology,Guangzhou 510006, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    不确定目标物自动识别是研发无人化智能起重装卸系统的关键,目前有效的技术是基于深度学习的实例分割。设计了一个融合CNN和Transformer的异构特征信息的模块,以解决当前实例分割主干网络存在的提取图像全局上下文特征信息的能力有限、卷积算子难以对感受野的长程相关性进行建模、以及识别纹理特征单一目标时缺乏足够的深度线索等问题。通过利用Transformer建模全局依赖关系,并与CNN提取局部信息的能力相融合;然后通过引入Dense RepPoints检测网络构建了针对不确定目标物的实例分割网络,实现准确分割且能分割其不同表面。应用实验结果表明本方法具有达到很好的实例分割效果,AP达到9882%、mIoU达到9189%,分别比目前同类的研究成果提升了495%和542%。

    Abstract:

    Uncertain object auto detection is the key technology of unmanned intelligent lifting handling, and efficient technology recently used is Instance segmentation model based on deep learning. Due to the limited ability of the existing cases to segment the trunk network to extract the global context feature information of lifting scene images, and the difficulty of the convolutional operators in the convolutional neural networkbased trunk network to model the long range correlation of the receptive field, and the lack of sufficient depth cues when identifying single targets with texture features, a module is designed to integrate the heterogeneous feature information of CNN and Transformer, and Transformer is used to model the global dependency relationship, and it is integrated with the ability of CNN to extract local information. Then, the Dense RepPoints detection network was introduced to construct the case segmentation network for the complex lifting and loading scenarios, which could accurately segment the loading and unloading objects and different surfaces of the objects. Compared with the most advanced method at present, AP increased by 4.95% to 98.82%, mIoU increased by 542% to 9189%, obtaining a good example segmentation effect, solving the key technical problems of intelligent lifting loading and unloading, thus improving the work efficiency and safety of unmanned lifting loading and unloading logistics transportation, and reducing costs.

    参考文献
    相似文献
    引证文献
引用本文

王国桢,卢国杰,王桂棠.无人化起重装卸的目标物实例分割模型研究[J].电子测量技术,2023,46(18):139-146

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-10
  • 出版日期:
文章二维码