基于特征重要性加权的随机森林点云分类研究
DOI:
CSTR:
作者:
作者单位:

沈阳建筑大学土木工程学院 沈阳 110168

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

辽宁省科技厅项目(2021JH2/10100005)资助


Random forest point cloud classification algorithm based on feature importance weighting
Author:
Affiliation:

School of Civil Engineering, Shenyang Jianzhu University,Shenyang 110168, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的随机森林模型构建时样本选取的随机性导致随机森林中包含了大量分类精度较低、分类性能相似的决策树分类器,进而影响整体随机森林模型分类精度与效率的问题,该文提出了一种基于特征重要性加权投票的随机森林算法。从决策树分类精度、不一致度量两方面剔除分类精度较低、分类性能相似的决策树,依据整体随机森林与单棵决策树特征重要性之间的相似性,计算每棵决策树的投票权重,提高了三维点云分类精度与分类效率。实验表明,改进后的随机森林分类算法照比传统的随机森林、支持向量机、决策树、神经网络、基于点特征分类方法分别提高了0.20%、15.159%、5.893%、6.316%、28.935%。在分类效率上,改进的随机森林照比传统的随机森林减少了约75%的时间。

    Abstract:

    The randomness of sample selection during the construction of traditional random forest model leads to a large number of decision tree classifiers with low classification accuracy and similar classification performance in random forest, which affects the accuracy and efficiency of the overall random forest model classification. In order to improve the accuracy and efficiency of random forest model in point cloud classification, a random forest algorithm based on feature importance weighted voting was proposed. Firstly, decision trees with low classification accuracy and similar classification performance are eliminated from the aspects of classification accuracy and inconsistency measurement of decision trees. Secondly, the voting weight of each decision tree is calculated based on the similarity between random forest and decision tree feature importance. In this paper, three sets of densely matched point clouds are taken as examples to compare the improved stochastic forest classification model with the traditional stochastic forest, support vector machine classifier (SVM), neural network and decision tree. The experiments show that the improved random forest classification algorithm is 0.20%, 15.159%, 5.893%, 6.316% and 28.935% higher than the traditional random forest, support vector machine, decision tree, neural network and point-based feature classification method, respectively. In terms of classification efficiency, the improved random forest classification algorithm takes about 75% less time than the traditional random forest.

    参考文献
    相似文献
    引证文献
引用本文

吴冬,阎卫东,王井利.基于特征重要性加权的随机森林点云分类研究[J].电子测量技术,2023,46(20):120-127

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-23
  • 出版日期:
文章二维码