基于边缘卷积的交通锥筒点云数据分割方法
DOI:
CSTR:
作者:
作者单位:

北京信息科技大学 现代测控技术教育部重点实验室 北京 100192

作者简介:

通讯作者:

中图分类号:

TP 391

基金项目:

国家“173”计划项目(2021JCJQJJ0022,MKF20210009)、国家自然科学基金(52175074)项目资助


Segmentation method via point cloud of traffic cones based on edge convolution
Author:
Affiliation:

MOE Key Laboratory of Modern Measurement and Control Technology,Beijing Information Science & Technology University,Beijing 100192, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本研究以用于构建临时道路中的交通锥筒为研究目标,以多线激光雷达采集的临时道路三维点云数据为输入,提出一种基于图理论的图神经网络模型,该模型可实现点云数据分割,并提升模型对无序性点云数据学习效果。以无人驾驶方程式赛车为实验平台,针对交通锥筒进行网络训练与测试,实验结果表明,图神经网络模型对交通锥筒的分割准确率达到886%,比PointNet模型提升了约10%,此外,该模型在稀疏雷达点云数据下还具有一定泛化能力,有较好的适用性。

    Abstract:

    In this study, the traffic cone used to construct the temporary road is taken as the research objective, and the three-dimensional point cloud data of the temporary road collected by multi-line LiDAR is taken as the input. A graph neural network model based on graph theory is proposed, which can realize the segmentation of point cloud data and improve the learning effect of the model on the disordered point cloud data. Take the driverless formula car as the experimental platform, train and test for traffic cone, the experimental results show that the segmentation accuracy of the graph neural network model reaches 88.6%, which is about 10% higher than that of the PointNet model. In addition, the model also has a certain generalization ability under sparse LiDAR point cloud data, and has good applicability.

    参考文献
    相似文献
    引证文献
引用本文

张政,孙鹏,王立勇,苏清华.基于边缘卷积的交通锥筒点云数据分割方法[J].电子测量技术,2023,46(20):98-103

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-01-23
  • 出版日期:
文章二维码