基于AGF和BM3D算法的声纳图像去噪
DOI:
CSTR:
作者:
作者单位:

河海大学信息学部信息科学与工程学院 常州 213000

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

住房和城乡建设部2022年科学技术计划项目(2022-K-165)、中国建筑第七工程局有限公司局课题(CSCEC7b-2022-Z-5)项目资助


Sonar image denoising based on AGF and BM3D algorithm
Author:
Affiliation:

College of Information Science and Engineering, Information Department, Hohai University,Changzhou 213000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    声检测技术逐渐成为水下目标检测的关键手段;受水文环境噪声、设备精度等影响,声纳图像不可避免的存在分辨率低、对比度低、目标边缘模糊等问题,不利于后续目标检测识别的进行;因此,文章提出一种改进引导滤波(AGF)与三维块匹配(BM3D)联合的去噪算法;首先,该文采用BM3D算法抑制图像中高斯和斑点噪声,完成初步去噪;最后采用AGF算法对图像进行二次滤波,该文通过引入改良的边缘检测Canny算子实现自适应调节正则化参数的大小优化引导滤波,从而保留更多图像细节且更好的保护边缘特征;两种算法联合去噪不仅能优化BM3D去噪性能的不足,还能有效的保留图像的边缘特征;实验结果表明所提出的算法不仅对声纳图像中的斑点噪声和高斯噪声有较好的抑制作用,而相比于其他传统算法在峰值信噪比、均方误差和结构相似度3个方面提升10%、15%和15%。

    Abstract:

    Acoustic detection technology has gradually become a key means of underwater target detection. Due to factors such as underwater hydrological environmental noise and equipment accuracy, sonar images inevitably have problems such as low resolution, low contrast, and blurred target edges, which are not conducive to subsequent target detection and recognition. In this paper, we propose an improved denoising algorithm that combines adaptive guided filtering (AGF) with three-dimensional block matching (BM3D). This algorithm uses the BM3D algorithm to suppress gaussian and speckle noise in the image for initial denoising; then, the AGF algorithm is used for secondary filtering of the image. At the same time, by introducing the improved edge detection Canny operator, we optimize the guided filter by adaptively adjusting the size of the regularization parameter to retain more image details and edge features. The combination of the two algorithms not only optimizes the shortcomings of the BM3D denoising performance but also effectively retains the edge features of the image. Experimental results show that the proposed algorithm not only has good suppression effects on speckle noise and Gaussian noise in sonar images but also improves the peak signal-to-noise ratio (PSNR), mean square error (MSE), and structural similarity(SSIM) index by 10%, 15%, and 15%, respectively, compared to other traditional algorithms.

    参考文献
    相似文献
    引证文献
引用本文

张宇,张学武,张文诺,宋轲,刘金雨.基于AGF和BM3D算法的声纳图像去噪[J].电子测量技术,2023,46(22):153-159

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-08
  • 出版日期:
文章二维码