融合注意力机制与GhostUNet的路面裂缝检测方法
DOI:
CSTR:
作者:
作者单位:

1.石家庄铁道大学信息科学与技术学院 石家庄 050043; 2.石家庄铁道大学省部共建交通工程结构力学行为与 系统安全国家重点实验室 石家庄 050043

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金(11972236)项目资助


Combining attention mechanism with GhostUNet method for pavement crack detection
Author:
Affiliation:

1.School of Information Science and Technology,Shijiazhuang Tiedao University,Shijiazhuang 050043,China; 2.State Key Lab of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University,Shijiazhuang 050043,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    路面裂缝是道路最为常见的缺陷,随着深度学习技术的发展,利用深度学习的方法对路面图像中的裂缝信息提取的方法愈来愈多。针对现有深度学习路面裂缝检测方法提取裂缝特征不完整导致精度低以及实时性不足的问题,提出一种融合注意力机制与GhostUNet的路面裂缝检测方法。本方法由编码器和解码器组成,将U-Net中的常规卷积改进为Ghost卷积,减少模型参数量;在编码和解码部分,为了提高对裂缝特征的提取能力,引入ECA注意力机制和残差连接,ECA注意力模块可以过滤不相关的特征信息,利用残差连接可以避免网络退化现象。为评估本方法在裂缝检测方面的有效性,使用两个公开裂缝数据集,并进行消融实验和对比实验,实验结果F1_score、P和R分别比U-Net平均提高了14.48%、14.35%和14.45%;该模型相比U-Net参数量下降了14.2 MB。该模型与同类模型比较,分割的准确率更高,参数量更少。

    Abstract:

    Pavement crack is the most common defect of road. With the development of deep learning technology, more and more methods are used to extract the crack information from pavement images. Aiming at the problems of low accuracy and lack of real-time due to incomplete extraction of crack features by existing deep learning pavement crack detection methods, a road crack detection method combining attention mechanism and GhostUNet is proposed. This method is composed of encoder and decoder. The conventional convolution in U-Net is improved to Ghost convolution and the number of model parameters is reduced. In coding and decoding, in order to improve the ability to extract crack features, ECA attention mechanism and residual connection are introduced. ECA attention module can filter irrelevant feature information, and residual connection can be used to avoid network degradation. To evaluate the effectiveness of this method in fracture detection, two publicly available fracture data sets were used, and ablation and comparison experiments were conducted. The experimental results of F1_score, P and R increased by 14.48%, 14.35% and 14.45%, respectively, compared with U-Net. The number of parameters in this model decreased by 14.2 MB compared with U-Net. Compared with similar models, this model has higher segmentation accuracy and fewer parameters.

    参考文献
    相似文献
    引证文献
引用本文

赵志宏,郝子晔,何朋.融合注意力机制与GhostUNet的路面裂缝检测方法[J].电子测量技术,2023,46(24):164-171

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-27
  • 出版日期:
文章二维码