面向自动驾驶的多任务环境感知算法
DOI:
CSTR:
作者:
作者单位:

1.上海第二工业大学计算机与信息工程学院 上海 201209; 2.上海第二工业大学智能制造与控制工程学院 上海 201209

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:


Multi-task environment perception algorithm for autonomous driving
Author:
Affiliation:

1.School of Computer and Information Engineering,Shanghai Polytechnic University, Shanghai 201209, China; 2.School of Intelligent Manufacturing and Control Engineering,Shanghai Polytechnic University, Shanghai 201209, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决复杂驾驶场景下目标检测精度较低而难以满足自动驾驶需求的问题,提出一种基于YOLOP的高效网络模型MEPNet。MEPNet可同时处理车辆检测、可行驶区域分割和车道线检测三项任务。首先,采用YOLOv7作为主体结构平衡精度与实时性;其次,设计了FRFB模块增大感受野,以增强网络的特征提取能力;并且提出在检测网络的头部添加小目标检测层,有效减轻车辆遮挡和重叠现象对识别结果的干扰;最后使用CARAFE作为上采样算子,精准定位的轮廓的同时更好地保留图片的语义信息。实验表明,该算法推理速度达到42.5 fps,对比基线YOLOP,车辆检测的mAP50和Recall分别提升了6.8%和6.3%,车道线检测的准确率和IoU分别提升了6%和1%,可行驶区域分割的mIoU达到92.5%,大幅度提升了性能,并且进一步设计了MEPNet-s,实现了四任务目标检测,亦满足自动驾驶所需的准确性和实时性。

    Abstract:

    In order to solve the problem of low object detection accuracy in complex driving scenarios which makes it difficult to meet the needs of autonomous driving, an efficient network model MEPNet based on YOLOP is proposed. MEPNet can simultaneously handle three tasks: vehicle detection, drivable area segmentation, and lane detection. First, YOLOv7 is used as the main structure to balance the accuracy and real-time performance. Second, the FRFB module is designed to enlarge receptive fields and enhance the feature extraction capability of the network. The proposed small object detection layer added to the head of the detection network effectively alleviates interference caused by vehicle occlusion and overlap. Finally, CARAFE is used as the upsampling operator to accurately locate object contours while preserving semantic information in images. Experimental results show that the algorithm achieves a inference speed of 42.5 fps, and compared with the baseline YOLOP, it improves the mAP50 and Recall of vehicle detection by 6.8% and 6.3%, the accuracy and IoU of lane detection by 6% and 1%, and the mIoU of drivable area segmentation reaches 92.5%, which significantly improves performance. Furthermore, MEPNet-s has been further designed to accomplish four-task object detection, while simultaneously meeting the accuracy and real-time requirements of autonomous driving.

    参考文献
    相似文献
    引证文献
引用本文

宋绍京,陆婷婷,孙翔,龚玉梅,陈建.面向自动驾驶的多任务环境感知算法[J].电子测量技术,2023,46(24):157-163

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-27
  • 出版日期:
文章二维码