基于POD-RBF代理模型和特征点KNN校正的电力舱温度反演方法
DOI:
CSTR:
作者:
作者单位:

1.三峡大学电气与新能源学院 宜昌 443002; 2.湖北省输电线路工程技术研究中心 宜昌 443002; 3.国网湖北省电力有限公司 经济技术研究院 武汉 430000; 4.国网宜昌市高新区供电公司供指分中心(调控分中心) 宜昌 443002

作者简介:

通讯作者:

中图分类号:

TM75

基金项目:

国家自然科学基金(52107006)、电力系统及大型发电设备安全控制与仿真国家重点实验室开放基金(SKLD21KM11)项目资助


Inverse temperature estimation of power cabin based on POD-RBF proxy model and feature point KNN correction
Author:
Affiliation:

1.College of Electrical Engineering and New Energy, China Three Gorges University,Yichang 443002, China; 2.Hubei Provincial Engineering Technology Research Center for Power Transmission Line,Yichang 443002, China; 3.State Grid Hubei Power Supply Limited Company Economic & Technology Research Institute,Wuhan 430000, China; 4.State Grid Yichang HighTech Zone Electric Power Supply Company Power Supply Service Command Subcenter,Yichang 443002, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决数值模拟方法计算不同工况下电力舱整体温度时算力需求大、适应性差等问题,本文提出了一种基于PODRBF代理模型和特征点KNN校正的电力舱温度反演方法。该方法基于仿真计算得到的不同工况下电力舱温度场数据,利用本征正交分解和径向基函数方法构建电力舱的温度反演代理模型,以避免重复计算,从而快速得到仿真模型的近似解。同时,使用K最近邻算法将特征温度点引入反演模型中,以此校正温度反演误差,提高反演的准确性和适应能力。以实际电力舱为例,对指定工况下的电力舱进行了温度反演。结果表明,该方法可以在电力舱内电缆通流情况以及特征温度点温度已知的情况下实现电力舱的实时温度反演,其反演温度与仿真计算温度的最大相对误差为0.96%,满足工程运用标准。

    Abstract:

    This paper proposes a power cabin temperature inversion method based on POD-RBF surrogate model and feature point KNN correction, aiming to address the challenges of high computational complexity and poor adaptability in numerical simulation methods for calculating the temperature distribution of power cabin under different working conditions. The proposed method utilizes simulated temperature field data obtained from various operating conditions to construct a temperature inversion model for the power cabin using the proper orthogonal decomposition (POD) and radial basis function (RBF) approach. This surrogate model effectively avoids redundant calculations, enabling rapid approximation of the simulated model. Meanwhile, the K-Nearest Neighbor (KNN) algorithm is employed to introduce the feature temperature points into the inversion model for correcting the temperature inversion error and improving the accuracy and adaptability of the in-version. Taking an actual power cabin as an example, the temperature inversion of the power cabin under the specified working condition is conducted. The results show that the proposed method can achieve real-time temperature inversion of the power cabin under the condition of cable current flow and known temperature of feature temperature points, with the maximum relative error between the inversion temperature and the simulation calculation temperature of 0.96%, meeting the engineering application standard.

    参考文献
    相似文献
    引证文献
引用本文

姜岚,李远,智李,周蠡,赵阳.基于POD-RBF代理模型和特征点KNN校正的电力舱温度反演方法[J].电子测量技术,2023,46(24):68-76

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-27
  • 出版日期:
文章二维码