面向边缘计算平台及遥感影像的实时检测算法
DOI:
CSTR:
作者:
作者单位:

1.四川轻化工大学自动化与信息工程学院 宜宾 644000; 2.四川轻化工大学计算机科学与工程学院 宜宾 644000; 3.人工智能四川省重点实验室 宜宾 644000; 4.企业信息化与物联网测控技术四川省高校重点实验室 宜宾 644000

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金(51905540)、中国高校产学研创新基金(2021ZYA11002)、研究生创新创业基金(Y2023271)项目资助


Real-time detection algorithm for edge computing platforms and remote sensing imagery
Author:
Affiliation:

1.School of Automation and Information Engineering, Sichuan University of Science & Engineering,Yibin 644000, China; 2.School of Computing Science and Engineering, Sichuan University of Science & Engineering,Yibin 644000, China; 3.Artificial Intelligence Key Laboratory of Sichuan Province,Yibin 644000, China; 4.Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things,Yibin 644000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有目标检测算法难以满足无人机遥感中实时检测的问题,提出了一种基于ShuffleNetv2及结构化剪枝的模型压缩方法。以YOLOv5m为基础,将ShuffleNetv2模型作为YOLOv5m的主干网络,减少模型的参数量及计算量,提升模型推理速度;其次,利用ECA注意力机制替换ShuffleNetv2中的SE模块,强化主干网络的特征提取能力;再者,以FocalEIoU作为YOLOv5算法的损失函数,提升模型的回归能力;最后,利用通道剪枝算法剔除Neck结构中冗余的参数,进一步压缩模型的参数及计算量,并通过模型微调的方式提升剪枝模型的精度。实验结果表明,在相同的测试环境下,与YOLOv5m相比,本文所提出模型的参数量及浮点运算量分别降低了86.3%和80.0%,mAP@0.5和mAP@0.5:0.95达到了92%及50.4%,优于所对比的其他主流检测算法。此外,所提出的模型在AGX边缘计算平台上达到了35帧/s的检测速度,满足实时检测的要求。

    Abstract:

    To address the issue of existing object detection algorithms struggling to meet real-time detection requirements in UAV remote sensing, we propose a model compression method based on ShuffleNetv2 and structured pruning. Using YOLOv5m as the foundation, we incorporate the ShuffleNetv2 model as the backbone network of YOLOv5m, reducing the model′s parameter count and computational complexity while improving inference speed. Furthermore, we employ the ECA attention mechanism to replace the SE module in ShuffleNetv2, enhancing the feature extraction capability of the backbone network. Additionally, we adopt FocalEIoU as the loss function for the YOLOv5 algorithm, improving the model′s regression ability. Finally, we use channel pruning to eliminate redundant parameters in the Neck structure, further compressing the model′s parameters and computational complexity, and enhancing the pruned model′s accuracy through fine-tuning.Experimental results show that, under the same testing environment, compared to YOLOv5m, the proposed model reduces the parameter count and floating-point operations by 86.3% and 80.0%, respectively. The model achieves an mAP@0.5 of 92% and an mAP@0.5:0.95 of 50.4%, outperforming other mainstream detection algorithms. Moreover, the proposed model achieves a detection speed of 35 frames/s on the AGX edge computing platform, satisfying the requirements for real-time detection.

    参考文献
    相似文献
    引证文献
引用本文

杨洋,宋品德,杨思念,曹立佳.面向边缘计算平台及遥感影像的实时检测算法[J].电子测量技术,2024,47(2):150-159

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-30
  • 出版日期:
文章二维码