改进YOLOv5s的复杂交通场景下目标检测算法
DOI:
CSTR:
作者:
作者单位:

长安大学信息工程学院 西安 710018

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:


Improved object detection algorithm for complex traffic scenes in YOLOv5s
Author:
Affiliation:

School of Information Engineering, Chang′an University, Xi′an 710018, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对在实际的交通道路目标检测中,存在着小目标检测精度低,遮挡目标容易出现漏检误检等问题,提出了一种改进的YOLOv5s道路目标检测算法YOLOv5s-OEAG。将YOLOv5s的标签分配策略更换为效率更高的OTA标签分配策略,提高模型的检测精度与泛化能力;提出了一种轻量化的解耦预测头对不同尺寸的特征层进行分类任务与回归任务的解耦,提高模型对道路中小目标的检测能力;将原始模型中的最近邻插值上采样模块替换为轻量级通用上采样CARAFE模块,有助于更好地保留图像中的细节信息,提高模型的精度;提出了一种新的C3模块GMC3,在减小模型计算量的同时提高模型捕获特征的能力;为了提高模型的泛化能力,对KITTI数据集进行了扩充,增加了小目标的数量。实验结果表明,改进后的模型在经过扩充后的KITTI数据集的mAP达到了90.4%,比原始模型的精度提高了2.8%;FPS为75,满足实时性的要求,在一定程度上提高了对复杂交通场景的适应能力。

    Abstract:

    In response to challenges in practical road target detection, such as low accuracy in detecting small targets and the occurrence of missed and false detections for occluded targets, an improved YOLOv5s road target detection algorithm, termed YOLOv5s-OEAG, is proposed in this study. The label assignment strategy of YOLOv5s is replaced with a more efficient OTA label assignment strategy to enhance the model′s detection accuracy and generalization ability. Additionally, a lightweight decoupled prediction head is introduced to decouple classification and regression tasks for different-sized feature layers, thereby improving the model′s capability to detect small targets on roads. The original nearest-neighbor interpolation upsampling module is replaced with the lightweight and versatile CARAFE module to better preserve fine details in the image, thereby enhancing the model′s accuracy. Furthermore, a novel C3 module, GMC3, is proposed to reduce model computational complexity while improving the model′s feature capturing capability. To enhance the model′s generalization ability, the KITTI dataset is augmented, increasing the number of small targets. Experimental results demonstrate that the improved model achieves a mAP of 90.4% on the augmented KITTI dataset, representing a 2.8% improvement over the original model′s accuracy. With a frame per second (FPS) rate of 75, meeting real-time requirements, the model exhibits enhanced adaptability to complex traffic scenarios.

    参考文献
    相似文献
    引证文献
引用本文

卫策,吕进,曲晨阳.改进YOLOv5s的复杂交通场景下目标检测算法[J].电子测量技术,2024,47(2):121-130

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-30
  • 出版日期:
文章二维码