混合多策略改进蜣螂算法的避障路径规划
DOI:
CSTR:
作者:
作者单位:

宁夏师范学院物理与电子信息工程学院 宁夏 756000

作者简介:

通讯作者:

中图分类号:

TP18;TP242

基金项目:

2023年宁夏师范学院校级重点科研项目(XJZDB2301)资助


Obstacle avoidance path planning of hybrid multi-strategy improved dung beetle optimizer
Author:
Affiliation:

School of Physical and Electronic Information Engineering,Ningxia Normal University,Ningxia 756000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了实现移动机器人在复杂环境中路径规划的高效搜索能力,提出了一种混合多策略的改进蜣螂算法。首先,引入改进ISPM混沌策略用于初始化蜣螂的初始种群,使初始总体分布更均匀,并降低算法落入局部最优解的可能性。然后,将贪婪选择策略与改进透镜成像反向学习策略相结合,改进蜣螂觅食行为的位置更新,平衡算法的局部开发和全局搜索能力,提高算法的收敛能力;最后,利用莱维飞行策略并加入改进动态权重更新方式,改进蜣螂偷窃行为的位置更新,改变最优全局解,防止算法陷入局部最优。为了验证改进算法的性能,采用基本测试函数和路径优化方面仿真,将改进后算法与其他四种群体智能算法进行了比较。实验结果表明,改进的蜣螂优化算法显著提高了收敛速度和优化精度,具有良好的鲁棒性。

    Abstract:

    In to achieve efficient search capability for path planning of mobile robots in complex environments, a hybrid multi-strategy improved dung beetle optimizer has been proposed. Firstly, the ISPM chaos strategy is introduced to initialize the initial population of fireflies. This ensures a more uniform distribution of the initial population and reduces the likelihood of the algorithm getting stuck in local optima. Then, the greedy selection strategy is combined with the improved lens imaging reverse learning strategy to update the positions of the fireflies during their foraging behavior. This balances the algorithm′s local exploration and global search capa-bilities, thereby enhancing its convergence ability. Finally, the Levy flight strategy and an improved dynamic weight update mechanism are employed to update the positions of the fireflies during their stealing behavior. This helps to change the optimal global solution and prevent the algorithm from getting trapped in local optima. To evaluate the performance of the improved algorithm, comparative experiments are conducted with four other swarm intelligence algorithms using benchmark test functions and simulation of path optimization. The experimental results demonstrate that the improved dung beetle optimizer significantly improves convergence speed and optimization accuracy, while maintaining good robustness.

    参考文献
    相似文献
    引证文献
引用本文

万怡华,张雪梅.混合多策略改进蜣螂算法的避障路径规划[J].电子测量技术,2024,47(2):69-78

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-30
  • 出版日期:
文章二维码