基于NACS-PSO算法的光伏系统 MPPT控制研究
DOI:
CSTR:
作者:
作者单位:

1.四川大学电气工程学院 成都 610065; 2.国网四川省电力公司电力科学研究院 成都 610000; 3.电力物联网四川省重点实验室 成都 610000

作者简介:

通讯作者:

中图分类号:

TM615

基金项目:

国家电网有限公司科技项目(52199922000M)资助


Research on MPPT control of photovoltaic systems based on NACS-PSO algorithm
Author:
Affiliation:

1.College of Electrical Engineering, Sichuan University,Chengdu 610065, China; 2.State Grid Sichuan Electric Power Research Institute,Chengdu 610000, China; 3.Power Internet of Things Key Laboratory of Sichuan Province,Chengdu 610000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对于局部遮阴下的光伏阵列,传统的最大功率点跟踪算法收敛速度慢、精度差、功率波动大且容易陷入局部最优。为此,提出一种基于新型自适应布谷鸟算法与粒子群算法相结合的复合算法。该方法在布谷鸟算法中引入自适应发现概率和自适应莱维飞行步长控制因子,同时加入对立种群策略,以提高算法收敛速度和全局寻优能力。在算法前期,用粒子群算法全局搜索快速找到全局最大功率点附近,后期用新型自适应布谷鸟算法在局部范围内精准寻优,以快速、准确和稳定地跟踪到全局最大功率点。仿真结果表明,本文提出的算法在四种光照模式下的收敛时间和跟踪误差分别为0.106 s和0.012%、0.108 s和0.034%、0.110 s和0.059%、0.106 s和0.031%,均优于其他算法,验证了本文算法在六种对比算法中,收敛速度最快、跟踪精度最高、功率波动最小、陷入局部最优的可能性最小。

    Abstract:

    In the context of local shading affecting photovoltaic arrays, the traditional maximum power point tracking algorithms exhibit slow convergence, poor accuracy, significant power fluctuations, and a susceptibility to getting trapped in local optima. For this reason, a composite algorithm based on the combination of a novel adaptive cuckoo algorithm and particle swarm algorithm was proposed. The method introduced adaptive discovery probability and adaptive L-vy flight step control factor into the cuckoo algorithm, and also incorporated the opposing population strategy in order to improve the algorithm′s convergence speed and global optimization seeking ability. In the early stage of the algorithm, the global search with particle swarm algorithm was used to quickly find the vicinity of global maximum power point (GMPP), and in the later stage, the new adaptive cuckoo algorithm was used to accurately search for the optimization in the local range in order to quickly, accurately, and stably track to the global maximum power point. The simulation results show that the convergence time and tracking error of the algorithm proposed in this paper are 0.106 s and 0.012%, 0.108 s and 0.034%, 0.110 s and 0.059%, and 0.106 s and 0.031%, respectively, for the four lighting modes, which are better than the other algorithms, and it validates that the algorithm in this paper has the fastest convergence speed, highest tracking accuracy, minimal power fluctuations, and the least likelihood of getting trapped in local optima among the six compared algorithms.

    参考文献
    相似文献
    引证文献
引用本文

白小惠,莫思特,范松海,徐琳,熊嘉宇.基于NACS-PSO算法的光伏系统 MPPT控制研究[J].电子测量技术,2024,47(3):62-70

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-04-30
  • 出版日期:
文章二维码