Vehicle re-identification based on local feature and focus fusion
DOI:
CSTR:
Author:
Affiliation:

1 School of Advanced Manufacturing, Guangdong University of Technology, Jieyang 515200,China; 2 School of automation, Guangdong University of Technology, Guangzhou 510006,China; 3 Experimental Teaching Department, Guangdong University of Technology, Guangzhou 510006,China

Clc Number:

TP391.41

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    There are many similar vehicles in city monitoring, which brings great challenges to vehicle re-identification. Local features such as front, window and roof are the subtle differences of similar vehicles. According to the attention characteristics of the thermal map of the vehicle detection algorithm, a MCRF-SSD algorithm is proposed to detect the local feature area of the vehicle, and combines it with GMM-EM clustering algorithm. The detection performance is better than the current mainstream algorithm on the open data set.At the same time, in order to increase the inter-instance and reduce the intra-instance, the Arcface loss function is introduced into the feature extraction stage. In order to improve the performance of vehicle re recognition, in the stage of global feature and local feature fusion, a focus fusion structure (FFS) method is proposed, which can preserve the spatial distribution of feature graph, and a learnable parameter is introduced to improve the efficiency of feature fusion. Experimental results show that the performance of the proposed algorithm is better than that of the current best performance scheme in public VehicleID and VeRi datasets.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: August 09,2024
  • Published:
Article QR Code