Research on adaptive ORB-SLAM2 algorithm in dark environments
DOI:
CSTR:
Author:
Affiliation:

Key Laboratory of Modern Measurement and Control Technology Ministry of Education, Beijing Information Science and Technology University,Beijing 100192, China

Clc Number:

TP2

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A feature point extraction algorithm based on adaptive threshold and an improved quadtree homogenization strategy are proposed to address the issue of low positioning accuracy or low matching logarithms of the SLAM system caused by the ORB-SLAM2 algorithm extracting fewer feature points in dark environments or environments with fewer textures, resulting in system crashes. Firstly, based on the brightness of the image, FAST (Features from Accelerated Seed Test) feature points are extracted using adaptive thresholds. Then, an improved quadtree homogenization strategy is used to eliminate and compensate the feature points of the image, completing feature point selection. The experimental results show that the improved feature point extraction algorithm increases the number of matching pairs by 17.6% and SLAM trajectory accuracy by 49.8% compared to the original algorithm in dark and textured environments, effectively improving the robustness and accuracy of the SLAM system.

    Reference
    Related
    Cited by
Get Citation
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:
  • Revised:
  • Adopted:
  • Online: June 07,2024
  • Published:
Article QR Code